函數(shù)
在實數(shù)集上是單調(diào)函數(shù),則m的取值范圍是
.
試題分析:
,函數(shù)在R上單調(diào),即
恒大于等于0,
即
,即
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)求曲線
在點
處的切線方程;
(2)若對于任意的
,都有
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
點P是曲線
上的任意一點,則點P到直線y=x-2的最小距離為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(2011•浙江)設(shè)函數(shù)f(x)=(x﹣a)2lnx,a∈R
(1)若x=e為y=f(x)的極值點,求實數(shù)a;
(2)求實數(shù)a的取值范圍,使得對任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,其中
是常數(shù).
(1)當(dāng)
時,求曲線
在點
處的切線方程;
(2)若存在實數(shù)
,使得關(guān)于
的方程
在
上有兩個不相等的實數(shù)根,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
觀察(x
2)′=2x,(x
4)′=4x
3,(cos x)′=-sin x,由歸納推理可得:若定義在R上的函數(shù)f(x)滿足f(-x)=f(x),記g(x)為f(x)的導(dǎo)函數(shù),則g(-x)等于 ( )
A.f(x) | B.-f(x) | C.g(x) | D.-g(x) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,曲線
在點
處的切線方程為
。
(1)求
、
的值;
(2)如果當(dāng)
,且
時,
,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d).若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)D是函數(shù)
定義域內(nèi)的一個子區(qū)間,若存在
,使
,則稱
是
的一個“次不動點”,也稱
在區(qū)間D上存在次不動點,若函數(shù)
在區(qū)間
上存在次不動點,則實數(shù)a的取值范圍是( )
查看答案和解析>>