【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且an和Sn滿足:4Sn=(an+1)2(n=1,2,3…),
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求{bn}的前n項(xiàng)和Tn .
【答案】
(1)解:∵4Sn=(an+1)2,①
∴4Sn﹣1=(an﹣1+1)2(n≥2),②
①﹣②得
4(Sn﹣Sn﹣1)=(an+1)2﹣(an﹣1+1)2.
∴4an=(an+1)2﹣(an﹣1+1)2.
化簡得(an+an﹣1)(an﹣an﹣1﹣2)=0.
∵an>0,∴an﹣an﹣1=2(n≥2).
∴{an}是以1為首項(xiàng),2為公差的等差數(shù)列.
∴an=1+(n﹣1)2=2n﹣1
(2)解:bn= =
=
(
﹣
).
∴Tn= +…+
= (1﹣
)=
【解析】(1)利用遞推關(guān)系、等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“裂項(xiàng)求和”方法即可得出.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,
,
,點(diǎn)
是
的中點(diǎn).
①求證: .
②求點(diǎn)到平面
的距離.
③求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱-
的底面是邊長為2的等邊三角形,
底面
,點(diǎn)
分別是棱
,
上的點(diǎn),且
(1)證明:平面平面
;
(2)若,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為
,
是首項(xiàng)為2的等比數(shù)列,且公比大于0,
,
,
.
(1)求和
的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,點(diǎn)
,直線
與動(dòng)直線
的交點(diǎn)為
,線段
的中垂線與動(dòng)直線
的交點(diǎn)為
.
(1)求動(dòng)點(diǎn)的軌跡
的方程;
(2)過動(dòng)點(diǎn)作曲線
的兩條切線,切點(diǎn)分別為
,
,求證:
的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,前n項(xiàng)和為
,
是首項(xiàng)為2的等比數(shù)列,且公比大于0,
,
,
.
(1)求和
的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢驗(yàn)訓(xùn)練情況,武警某支隊(duì)于近期舉辦了一場展示活動(dòng),其中男隊(duì)員12人,女隊(duì)員18人,測試結(jié)果如莖葉圖所示(單位:分).若成績不低于175分者授予“優(yōu)秀警員”稱號,其他隊(duì)員則給予“優(yōu)秀陪練員”稱號.
(1)若用分層抽樣的方法從“優(yōu)秀警員”和“優(yōu)秀陪練員”中共提取10人,然后再從這10人中選4人,那么至少有1人是“優(yōu)秀警員”的概率是多少?
(2)若所有“優(yōu)秀警員”中選3名代表,用表示所選女“優(yōu)秀警員”的人數(shù),試求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是橢圓
的一個(gè)頂點(diǎn),
的長軸是圓
的直徑.
是過點(diǎn)
且互相垂直的兩條直線,其中
交圓
于兩點(diǎn)
交橢圓
于另一點(diǎn)
.
(1)求橢圓的方程;
(2)求面積取最大值時(shí)直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com