設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,若
m
=(b,  2csinB),  
n
=(cosB
,sinC),且
m
n

(Ⅰ)求B的大;
(Ⅱ)求sinA+sinC的取值范圍.
(I)∵
m
n
,∴bsinC=2csinBcosB.(2分)
∴由正弦定理知:sinBsinC=2sinBsinCcosB.
∵B,C(0,π),
∴sinBsinC≠0,∴cosB=
1
2
,(4分)
又0<B<π,∴B=
π
3
.(5分)
(Ⅱ)由A+B+C=π及B=
π
3

C=
2
3
π-A

又△ABC為銳角三角形,∴
0<A<
π
2
0<
2
3
π-A<
π
2

π
6
<A<
π
2
.(8分)
sinA+sinC=sinA+sin(
2
3
π-A)=
3
2
sinA+
3
2
cosA=
3
sin(A+
π
6
)
.(10分)
A+
π
6
∈(
π
3
,  
2
3
π)
,
sin(A+
π
6
)∈(
3
2
,  1]

sinA+sinC∈(
3
2
,  
3
]
.(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大小;
(Ⅱ)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大;
(Ⅱ)若a=3
3
,c=5,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,已知a=
3
b
sinB
=2

(1)求A的大;
(2)求
a2+b2-c2
ab
+2cosB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設銳角三角形ABC的角A,B,C所對的邊分別為a,b,c,已知a2+b2-c2=ab.
(1)求∠C的度數(shù);  (2)求∠A的取值范圍; (3)求sinA+sinB的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•湖北模擬)設銳角三角形ABC的內角A,B,C的對邊分別為a,b,c,若
m
=(b,  2csinB),  
n
=(cosB
,sinC),且
m
n

(Ⅰ)求B的大;
(Ⅱ)求sinA+sinC的取值范圍.

查看答案和解析>>

同步練習冊答案