13.已知點C是線段AB上一點,$\overrightarrow{AC}$=2$\overrightarrow{CB}$,$\frac{\overrightarrow{MA}•\overrightarrow{MC}}{|\overrightarrow{MA}|}$=$\frac{\overrightarrow{MB}•\overrightarrow{MC}}{\overrightarrow{|MB|}}$,則$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|AB{|}^{2}}$的最大值為2.

分析 由已知可得$|\overrightarrow{MA}|=2|\overrightarrow{MB}|$,然后以AB所在直線為x軸,以C為坐標原點距離平面直角坐標系,設點A、B、M的坐標,利用數(shù)量積的坐標運算求得答案.

解答 解:由$\frac{\overrightarrow{MA}•\overrightarrow{MC}}{|\overrightarrow{MA}|}$=$\frac{\overrightarrow{MB}•\overrightarrow{MC}}{\overrightarrow{|MB|}}$,得$\frac{|\overrightarrow{MA}|•|\overrightarrow{MC}|cos∠AMC}{|\overrightarrow{MA}|}=\frac{|\overrightarrow{MB}|•|\overrightarrow{MC}|cos∠BMC}{|\overrightarrow{MB}|}$,
∴cos∠AMC=cos∠BMC,即∠AMC=∠BMC,
又$\overrightarrow{AC}$=2$\overrightarrow{CB}$,∴$|\overrightarrow{MA}|=2|\overrightarrow{MB}|$,
如圖:設|AB|=3a,
以AB所在直線為x軸,以C為坐標原點距離平面直角坐標系,
則A(-a,0),B(a,0),
再設M(m,n),
由$|\overrightarrow{MA}|=2|\overrightarrow{MB}|$,得$\sqrt{(-2a-m)^{2}+{n}^{2}}=2\sqrt{(a-m)^{2}+{n}^{2}}$,
整理得:m2+n2=4ma ①,
又$\overrightarrow{MA}•\overrightarrow{MB}=(-2a-m,-n)•(a-m,-n)$=5ma-2a2,
∴$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|AB{|}^{2}}$=$\frac{5ma-2{a}^{2}}{9{a}^{2}}$=$\frac{5m}{9a}-\frac{2}{9}$,
又由①知:M的軌跡為(m-2a)2+n2=4a2,∴m≤4a,
∴$\frac{\overrightarrow{MA}•\overrightarrow{MB}}{|AB{|}^{2}}$$≤\frac{20a}{9a}-\frac{2}{9}=2$.
故答案為:2.

點評 本題考查平面向量的數(shù)量積運算,考查數(shù)學轉(zhuǎn)化思想方法,考查推理論證能力和運算能力,難度較大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=(ax+b)ex,g(x)=-x2+cx+d.若函數(shù)f(x)和g(x)的圖象都過點P(0,1),且在點P處有相同的切線y=2x+1.
(I)求a,b,c,d的值;
(Ⅱ)當x∈[0,+∞)時,判斷函數(shù)h(x)=f(x)-g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.不等式|x-3|+|x+1|>6的解集為(  )
A.(-∞,-2)B.(4,+∞)C.(-∞,-2)∪(4,+∞)D.(-2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若a=1,c=2(b-cosC),則△ABC周長的取值范圍是( 。
A.(1,3]B.[2,4]C.(2,3]D.[3,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設Sn是數(shù)列an=$\frac{1}{3}$[2n-(-1)n]的前n項的和,且bn=anan+1,問是否存在常數(shù)λ,使得bn-λSn>0對任意n∈N*都成立,若存在,求出λ的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知$\overrightarrow a=({1,-3})$,$\overrightarrow b=({3,2sinα})$,若$\overrightarrow a⊥\overrightarrow b$,則$cos({\frac{π}{2}+α})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在n元數(shù)集S={a1,a2,…an}中,設X(S)=$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$,若S的非空子集A滿足X(A)=X(S),則稱A是集合S的一個“平均子集”,并記數(shù)集S的k元“平均子集”的個數(shù)為fs(k),已知集合S={1,2,3,4,5,6,7,8,9},T={-4,-3,-2,-1,0,1,2,3,4},則下列說法錯誤的是( 。
A.fs(4)=fs(5)B.fs(4)=fT(5)C.fs(1)+fs(4)=fT(5)+fT(8)D.fs(2)+fs(3)=fT(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.垂直于直線y=x+1且與圓x2+y2=4相切于第一象限的直線方程是(  )
A.x+y+2$\sqrt{2}$=0B.x+y+2=0C.x+y-2$\sqrt{2}$=0D.x+y-2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知△ABC的一個內(nèi)角為120°.并且三邊長從小到大依次增加4,求△ABC的面積.

查看答案和解析>>

同步練習冊答案