已知函數(shù)f(x)=x3+2x2+x.
(I)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(II)若對(duì)于任意x∈(0,+∞),f(x)≥ax2恒成立,求實(shí)數(shù)a的取值范圍.
解:(I)∵f'(x)=3x
2+4x+1=(3x+1)(x+1)
令f'(x)>0得x>-
或x<-1
故函數(shù)在(-∞,-1)與(-
,+∞)是增函數(shù),在(-1,-
)是減函數(shù),故函數(shù)在x=-1處取到極大值,在x=-
處取到極小值
極大值為0,極小值-
(II)若對(duì)于任意x∈(0,+∞),f(x)≥ax
2恒成立,則必有a≤
=x+
+2對(duì)于任意x∈(0,+∞),恒成立,
∵x+
+2≥4,等號(hào)當(dāng)且僅當(dāng)x=
=1時(shí)成立
∴a≤4
∴實(shí)數(shù)a的取值范圍(-∞,4]
分析:(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),再令導(dǎo)數(shù)大于0求出單調(diào)增區(qū)間,導(dǎo)數(shù)小于0求出函數(shù)的減區(qū)間,再由極值的定義判斷出極值即可;
(II)若對(duì)于任意x∈(0,+∞),f(x)≥ax
2恒成立,則必有a≤
對(duì)于任意x∈(0,+∞),恒成立,易求.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的極值以及由函數(shù)恒成立的問(wèn)題求參數(shù)的取值范圍,求解本題關(guān)鍵是記憶好求導(dǎo)的公式以及極值的定義,對(duì)于函數(shù)的恒成立的問(wèn)題求參數(shù),要注意正確轉(zhuǎn)化,恰當(dāng)?shù)霓D(zhuǎn)化可以大大降低解題難度.