分析 作出不等式組對應(yīng)的平面區(qū)域,利用分式函數(shù)的性質(zhì),轉(zhuǎn)化為兩點間的斜率,利用數(shù)形結(jié)合進行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域,$\frac{x+y-1}{x+3}$=$\frac{x+3+y-4}{x+3}$=1+$\frac{y-4}{x+3}$,
則$\frac{y-4}{x+3}$的幾何意義是區(qū)域內(nèi)的點到定點D(-3,4)的斜率,
由圖象得AD的斜率最大,CD的斜率最小,
由$\left\{\begin{array}{l}{x=2}\\{y=2x+2}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=6}\end{array}\right.$,即A(2,6),
由$\left\{\begin{array}{l}{x=2}\\{x+y-2=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,即C(2,0),
則AD的斜率k=$\frac{6-4}{2+3}$=$\frac{2}{5}$,CD的斜率k=$\frac{0-4}{2+3}$=$-\frac{4}{5}$,
即$-\frac{4}{5}$≤$\frac{y-4}{x+3}$≤$\frac{2}{5}$,$\frac{1}{5}$≤1+$\frac{y-4}{x+3}$≤$\frac{7}{5}$,
即$\frac{x+y-1}{x+3}$的取值范圍是$[\frac{1}{5},\frac{7}{5}]$,
故答案為:$[\frac{1}{5},\frac{7}{5}]$.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用分式的性質(zhì),轉(zhuǎn)化為直線斜率是解決本題的關(guān)鍵.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想進行求解.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25π | B. | 50π | C. | 100π | D. | 200π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $3\sqrt{5}$ | B. | $3\sqrt{2}$ | C. | $2\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{13}$ | B. | 13 | C. | $\sqrt{13}$ | D. | 26 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 10 | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{42π}{3}$ | B. | $\frac{40π}{3}$ | C. | $\frac{43π}{3}$ | D. | $\frac{45π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com