已知點(diǎn)F1,F(xiàn)2分別是橢圓為C:數(shù)學(xué)公式的左、右焦點(diǎn),過(guò)點(diǎn)F1(-c,0)作x軸的垂線交橢圓C的上半部分于點(diǎn)P,過(guò)點(diǎn)F2作直線PF2的垂線交直線數(shù)學(xué)公式于點(diǎn)Q,若直線PQ與雙曲線數(shù)學(xué)公式的一條漸近線平行,則橢圓的離心率為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
C
分析:將點(diǎn)P(-c,y1)(y1>0)代入C:,得P(-c,),由過(guò)點(diǎn)F2作直線PF2的垂線交直線于點(diǎn)Q,PF2⊥QF2,得Q(,2a),由直線PQ與雙曲線的一條漸近線平行,知,由此能求出結(jié)果.
解答:將點(diǎn)P(-c,y1)(y1>0)代入C:,
得y1=
∴P(-c,),
∵過(guò)點(diǎn)F2作直線PF2的垂線交直線于點(diǎn)Q,PF2⊥QF2,
∴設(shè)Q(,y),得,解得y=2a,∴Q(,2a),
∵直線PQ與雙曲線的一條漸近線平行,
,即4a-=+,
整理,得2e3-+2e-=0,
解得e=
故選C.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,綜合性強(qiáng).解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•聊城一模)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過(guò)點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•青州市模擬)已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為
2
+1
,且△PF1F2的最大面積為1.
( I)求橢圓C的方程.
( II)點(diǎn)M的坐標(biāo)為(
5
4
,0)
,過(guò)點(diǎn)F2且斜率為k的直線L與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2(1,0)的距離的最大值為
2
+1.
(1)求橢圓C的方程.
(2)點(diǎn)M的坐標(biāo)為(
5
4
,0),過(guò)點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn).對(duì)于任意的k∈R,
MA
MB
是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省期中題 題型:解答題

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:(a>b>0)的左、右焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),P到焦點(diǎn)F2的距離的最大值為+1,且△PF1F2的最大面積為1。
(1)求橢圓C的方程。
(2)點(diǎn)M的坐標(biāo)為,過(guò)點(diǎn)F2且斜率為k的直線L與橢圓C相交于A,B兩點(diǎn)。對(duì)于任意的k∈R,是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省青島十九中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)F1,F(xiàn)2分別為橢圓C:的左右焦點(diǎn),P是橢圓C上的一點(diǎn),且的面積為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)M的坐標(biāo)為,過(guò)點(diǎn)F2且斜率為k的直線l與橢圓C相交于A,B兩點(diǎn),對(duì)于任意的是否為定值?若是求出這個(gè)定值;若不是說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案