【題目】在數(shù)列{an},{bn}中,anbn+n,bn=﹣an+1.

1)證明:數(shù)列{an+3bn}是等差數(shù)列.

2)求數(shù)列的前n項(xiàng)和Sn.

【答案】1)證明見解析;(2Sn

【解析】

(1)可將bn=﹣an+1代入anbn+n計(jì)算可得數(shù)列{an}的通項(xiàng)公式,然后根據(jù)bn=﹣an+1可得數(shù)列{bn}的通項(xiàng)公式,即可計(jì)算出數(shù)列{an+3bn}的通項(xiàng)公式,再根據(jù)等差數(shù)列的定義法可證明數(shù)列{an+3bn}是等差數(shù)列;

(2)先根據(jù)(1)的結(jié)果計(jì)算出數(shù)列的通項(xiàng)公式,然后根據(jù)通項(xiàng)公式的特點(diǎn)可采用錯(cuò)位相減法計(jì)算出前n項(xiàng)和Sn.

1)證明:由題意,將bn=﹣an+1代入anbn+n,可得

anbn+n=﹣an+1+n,即2ann+1,

an,nN*

bn=﹣an+11,nN*

an+3bn32n,

∵(an+1+3bn+1)﹣(an+3bn)=2﹣(n+1)﹣(2n)=﹣1

∴數(shù)列{an+3bn}是以﹣1為公差的等差數(shù)列.

2)由(1)知,

Sn,

Sn,

兩式相減,可得

Sn

,/span>

Sn.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達(dá)關(guān)口……” 那么該人第一天走的路程為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每條小線段重復(fù)上述步驟,得到16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”,…,如此進(jìn)行“次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度達(dá)到初始線段的1000倍,則至少需要通過構(gòu)造的次數(shù)是( .(取,

A.16B.17C.24D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為:為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)P的直角坐標(biāo)為,若直線l與曲線C分別相交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PDM(異于點(diǎn)D),交PCN(異于點(diǎn)C.

1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個(gè)面的直角(只需寫出結(jié)論);若不是,請說明理由;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實(shí)黨中央對新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線上教育教學(xué)工作.某教育機(jī)構(gòu)為了了解人們對其數(shù)學(xué)網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如下:

若評(píng)分不低于80分,則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式認(rèn)可,否則認(rèn)為該用戶對此教育機(jī)構(gòu)授課方式不認(rèn)可”.

1)請根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此列聯(lián)表分析,能否有95%的把握認(rèn)為城市經(jīng)濟(jì)狀況與該市的用戶認(rèn)可該教育機(jī)構(gòu)授課方式有關(guān)?

認(rèn)可

不認(rèn)可

合計(jì)

A城市

B城市

合計(jì)

2)以該樣本中A,B城市的用戶對此教育機(jī)構(gòu)授課方式認(rèn)可的頻率分別作為AB城市用戶對此教育機(jī)構(gòu)授課方式認(rèn)可的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機(jī)抽取2個(gè)用戶,用X表示這4個(gè)用戶中對此教育機(jī)構(gòu)授課方式認(rèn)可的用戶個(gè)數(shù),求X的分布列.

參考公式:,其中.

參考數(shù)據(jù):

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為,過其右焦點(diǎn)F的直線交橢圓CMN兩點(diǎn),交y軸于E點(diǎn).若,

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)試判斷是否是定值.若是定值,求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時(shí),證明:;

2)若只有一個(gè)零點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;

2)若直線l與曲線C相交于A,B兩點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案