9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,若在雙曲線上存在點P使△OPF2是以O(shè)為頂點的等腰三角形,又|PF1|+|PF2|=2$\sqrt{2{c}^{2}-^{2}}$,其中c為雙曲線的半焦距,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

分析 由題意,PF1⊥PF2,設(shè)|PF1|=m,|PF2|=n,則m-n=2a,m+n=2$\sqrt{2{c}^{2}-^{2}}$,m2+n2=4c2,可得(a+$\sqrt{2{c}^{2}-^{2}}$)2+($\sqrt{2{c}^{2}-^{2}}$-a)2=4c2,求出a=b,即可得出結(jié)論.

解答 解:由題意,PF1⊥PF2
設(shè)|PF1|=m,|PF2|=n,則m-n=2a,m+n=2$\sqrt{2{c}^{2}-^{2}}$,m2+n2=4c2,
∴(a+$\sqrt{2{c}^{2}-^{2}}$)2+($\sqrt{2{c}^{2}-^{2}}$-a)2=4c2
∴a=b,
∴e=$\sqrt{2}$,
故選:A.

點評 本題考查雙曲線的方程與性質(zhì),考查勾股定理的運用,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=$\frac{{e}^{x}-1}{x}$,證明:
(I)當(dāng)x<0時,f(x)<1;
(II)對任意a>0,當(dāng)0<|x|<ln(1+a)時,|f(x)-1|<a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題,松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等,如圖是源于其思想的一個程序框圖,若輸入的a=10,b=4,則輸出的n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,角A、B、C的對邊分別為a,b,c,若a=$\sqrt{6}$,b=2,B=45°,tanA•tanC>1,則角C的大小為75°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α,β為平面,a,b,c為直線,下列命題正確的是( 。
A.a?α,若b∥a,則b∥αB.α⊥β,α∩β=c,b⊥c,則b⊥β
C.a⊥b,b⊥c,則a∥cD.a∩b=A,a?α,b?α,a∥β,b∥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在復(fù)平面中,復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$+i4對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有兩個不同的實數(shù)根,求證:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[$\frac{1}{e}$,e]使得mf′(x)+g(x)≥2x+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知正項等比數(shù)列{an}的第四項,第五項,第六項分別為1,m,9,則雙曲線$C:\frac{y^2}{6}-\frac{x^2}{m}=1$的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3+tcosφ}\\{y=1+tsinφ}\end{array}\right.$(t為參數(shù)),在以坐標(biāo)原點為極點,x軸的正半軸為極軸的極坐標(biāo)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐標(biāo)方程;
(Ⅱ)當(dāng)φ∈(0,π)時,l與C相交于P,Q兩點,求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊答案