14.在復(fù)平面中,復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$+i4對(duì)應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)$\frac{1}{(1+i)^{2}+1}$+i4=$\frac{1}{1+2i}$+1=$\frac{1-2i}{(1+2i)(1-2i)}$+1=$\frac{6}{5}$-$\frac{2}{5}$i對(duì)應(yīng)的點(diǎn)($\frac{6}{5}$,-$\frac{2}{5}$)在第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力 與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列函數(shù)在定義域中既是奇函數(shù)又是增函數(shù)的是( 。
A.y=2xB.y=-x3C.$y=3{x^{\frac{1}{3}}}$D.$y=x+\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=sin(2x+$\frac{π}{6}$)+cos(2x+$\frac{π}{3}$)+sin2x
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,若f($\frac{A}{2}$)=$\sqrt{2}$,a=2,b=$\sqrt{6}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.王昌齡《從軍行》中兩句詩(shī)為“黃沙百戰(zhàn)穿金甲,不破樓蘭終不還”,其中后一句“攻破樓蘭”是“返回家鄉(xiāng)”的( 。
A.充要條件B.既不充分也不必要條件
C.充分條件D.必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若在雙曲線上存在點(diǎn)P使△OPF2是以O(shè)為頂點(diǎn)的等腰三角形,又|PF1|+|PF2|=2$\sqrt{2{c}^{2}-^{2}}$,其中c為雙曲線的半焦距,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足$\frac{{a}_{n}}{2}$=logabn(n∈N*),求數(shù)列{(an+6)•bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(0,1),B(1,0),C(0,-2),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足|$\overrightarrow{CM}$|=1,則|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OM}$|的最大值是( 。
A.$\sqrt{2}+1$B.$\sqrt{7}+1$C.$\sqrt{2}$-1D.$\sqrt{7}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若復(fù)數(shù)z滿足z-1=$\frac{(i-1)^{2}+2}{1+i}$(i為虛數(shù)單位),則z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x≥0}\\{x-2y≥0}\\{y≥x-1}\end{array}\right.$,則z=ax+y(a>0)的最小值為( 。
A.0B.aC.2a+1D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案