在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且.

(Ⅰ)求證:直線ER與GR′的交點P在橢圓+=1上;
(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點.

詳見解析;直線MN過定點(0,-3).

解析試題分析:先計算出E、R、G、R′各點坐標(biāo),得出直線ER與GR′的方程,解得其交點坐標(biāo) 代入滿足橢圓方程即可; 先討論直線MN的斜率不存在時的情況,在討論斜率存在時,用斜截式設(shè)出直線MN方程.與橢圓方程聯(lián)立,用“設(shè)而不求”的方法通過韋達(dá)定理得出b為定值-3.從而證明出MN過定點(0,-3).
試題解析:(Ⅰ)∵,∴,             1分
  則直線的方程為       ①         2分
 則直線的方程為          ②         3分
由①②得                                       4分
   
   5分
∴直線的交點在橢圓上  6分
(Ⅱ)① 當(dāng)直線的斜率不存在時,設(shè)
  ∴ ,不合題意     8分
② 當(dāng)直線的斜率存在時,設(shè) 

聯(lián)立方程 得
 ,
   10分


代入上式得      13分
∴直線過定點                                       14分
考點:1.直線的方程;2.解析幾何;3.韋達(dá)定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:,離心率為,焦點的直線交橢圓于兩點,且的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點P(0,m)(m0),與橢圓C交于相異兩點A,B且.若,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當(dāng)l的斜率為1時,坐標(biāo)原點O到l的距離為
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時,有成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:  (a>b>0)的兩個焦點和短軸的兩個端點都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點M(2,0),且與橢圓C相交于A, B兩點.試探討k為何值時,三角形OAB為直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為拋物線的焦點,拋物線上點滿足

(Ⅰ)求拋物線的方程;
(Ⅱ)點的坐標(biāo)為(,),過點F作斜率為的直線與拋物線交于、兩點,、兩點的橫坐標(biāo)均不為,連結(jié)并延長交拋物線于、兩點,設(shè)直線的斜率為,問是否為定值,若是求出該定值,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-的距離為,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連結(jié)AE,AF分別與CD交于G、H

(Ⅰ)設(shè)EF中點為,求證:O、、B、P四點共圓
(Ⅱ)求證:OG =OH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

四邊形ABCD的四個頂點都在拋物線上,A,C關(guān)于軸對稱,BD平行于拋物線在點C處的切線。
(Ⅰ)證明:AC平分
(Ⅱ)若點A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定圓的圓心為,動圓過點,且和圓相切,動圓的圓心的軌跡記為
(Ⅰ)求曲線的方程;
(Ⅱ)若點為曲線上一點,試探究直線:與曲線是否存在交點? 若存在,求出交點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案