已知橢圓C:+=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有=+成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.
(Ⅰ);(Ⅱ)P(,±),x±y-=0.
解析試題分析:(Ⅰ) 先利用點到直線的距離公式求,再利用離心率求,最后利用參數的關系求;(Ⅱ)設點利用方程組消元后得根與系數關系,然后代入題中條件化簡可求.
試題解析:(Ⅰ) 設F(c,0),當l的斜率為1時,其方程為x-y-c=0,
∴O到l的距離為,
由已知,得=,∴c=1.
由e==,得a=,b==. 4分
(Ⅱ)假設C上存在點P,使得當l繞F轉到某一位置時,有=+成立,
設A(x1,y1),B(x2,y2),則P(x1+x2,y1+y2).
由(Ⅰ),知C的方程為+=1.
由題意知,l的斜率一定不為0,故不妨設l:x=ty+1.
由,消去x并化簡整理,得(2t2+3)y2+4ty-4=0.
由韋達定理,得y1+y2=-,
∴x1+x2=ty1+1+ty2+1=t(y1+y2)+2=-+2=,
∴P(,-).
∵點P在C上,∴+=1,
化簡整理,得4t4+4t2-3=0,即(2t2+3)(2t2-1)=0,解得t2=.
當t=時,P(,-),l的方程為x-y-=0;
當t=-時,P(,),l的方程為x+y-=0.
故C上存在點P(,±),使=+成立,此時l的方程為x±y-=0. 13分
考點:橢圓的基本概念,點到直線的距離,根與系數關系,設而不求的思想.
科目:高中數學 來源: 題型:解答題
已知橢圓過點,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為()的直線與橢圓相交于兩點,直線、分別交直線 于、兩點,線段的中點為.記直線的斜率為,求證: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為,且過點.
(1)求橢圓的方程;
(2)若過點C(-1,0)且斜率為的直線與橢圓相交于不同的兩點,試問在軸上是否存在點,使是與無關的常數?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知點是橢圓:上一點,分別為的左右焦點,,的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設,過點作直線,交橢圓異于的兩點,直線的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的中心在坐標原點,右準線為,離心率為.若直線與橢圓交于不同的兩點、,以線段為直徑作圓.
(1)求橢圓的標準方程;
(2)若圓與軸相切,求圓被直線截得的線段長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線經過點,且雙曲線的漸近線與圓相切.
(1)求雙曲線的方程;
(2)設是雙曲線的右焦點,是雙曲線的右支上的任意一點,試判斷以為直徑的圓與以雙曲線實軸為直徑的圓的位置關系,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知曲線上任意一點到點的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設,是軸上的兩點,過點分別作軸的垂線,與曲線分別交于點,直線與x軸交于點,這樣就稱確定了.同樣,可由確定了.現已知,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點,以HF、GE所在直線分別為x,y軸建立直角坐標系(如圖所示).若R、R′分別在線段0F、CF上,且.
(Ⅰ)求證:直線ER與GR′的交點P在橢圓:+=1上;
(Ⅱ)若M、N為橢圓上的兩點,且直線GM與直線GN的斜率之積為,求證:直線MN過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
給定橢圓: ,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,且其短軸上的一個端點到的距離為.
(Ⅰ)求橢圓的方程和其“準圓”方程;
(Ⅱ)點是橢圓的“準圓”上的一個動點,過動點作直線,使得與橢圓都只有一個交點,試判斷是否垂直,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com