【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為( ,0)
(1)求橢圓C的方程;
(2)若過原點(diǎn) 作兩條互相垂直的射線,與橢圓交于A,B兩點(diǎn),求證:點(diǎn)O到直線AB的距離為定值.
【答案】
(1)解:由右焦點(diǎn)為( ,0),則 ,又離心率為 ,所以 , ,
則
(2)解:設(shè)A , ,若k存在,則設(shè)直線AB:y=kx+m.
得
有OA⊥OB知x1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 代入,得4 m2=3 k2+3原點(diǎn)到直線AB的距離 , 當(dāng)AB的斜率不存在時(shí), ,可得, 依然成立.所以點(diǎn)O到直線 的距離為定值
【解析】(1)根據(jù)題意結(jié)合已知利用橢圓的簡單性質(zhì)即可求出橢圓的方程。(2)根據(jù)題意分情況討論斜率存在和不存在兩種情況,若存在設(shè)出A、B兩點(diǎn)的坐標(biāo)與直線的方程,聯(lián)立直線與橢圓方程消去y得到關(guān)于x的一元二次方程,由韋達(dá)定理結(jié)合兩條直線垂直斜率之積等于-1即可求出m和k的關(guān)系式,代入到點(diǎn)到直線的距離公式即可求出該距離為;若不存在時(shí),利用特殊的幾何關(guān)系也可求出點(diǎn)O到直線AB的距離也是定值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD= ,AA1=3,E為CD上一點(diǎn),DE=1,EC=3
(1)證明:BE⊥平面BB1C1C;
(2)求三棱錐B1﹣EA1C1的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題: ①﹣3是函數(shù)y=f(x)的極值點(diǎn);
②﹣1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(﹣3,1)上單調(diào)遞增.
則正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的(產(chǎn)品凈重,單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,下列命題中:①樣本中凈重大于或等于98克并且小于102克的產(chǎn)品的個(gè)數(shù)是60;②樣本的眾數(shù)是101;③樣本的中位數(shù)是 ; ④樣本的平均數(shù)是101.3.
正確命題的代號(hào)是(寫出所有正確命題的代號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 a,b 為實(shí)數(shù),且 a>0,b>0 ,
(1)求證: ;
(2)求(5-2a)2+4b2+(a-b)2 的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com