在二項(xiàng)式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開(kāi)式里最大系數(shù)項(xiàng)恰是常數(shù)項(xiàng).

(1)求它是第幾項(xiàng);

(2)求的范圍.

 

【答案】

(1)設(shè)Tr 1 =C(axm)12r·(bxn)r

=Ca12rbrxm(12r)nr為常數(shù)項(xiàng),則有m(12-r)+nr=0,

即m(12-r)-2mr=0,∴r=4,它是第5項(xiàng).

(2)∵第5項(xiàng)又是系數(shù)最大的項(xiàng),

∴有

由①得a8b4≥a9b3,

∵a>0,b>0,∴ b≥a,即≤.

由②得≥,∴≤≤.

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若非零實(shí)數(shù)m、n滿足2m+n=0,且在二項(xiàng)式(axm+bxn12(a>0,b>0)的展開(kāi)式中當(dāng)且僅當(dāng)常數(shù)項(xiàng)是系數(shù)最大的項(xiàng),
(1)求常數(shù)項(xiàng)是第幾項(xiàng);
(2)求
ab
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:揚(yáng)州市2006~2007學(xué)年度第二學(xué)期期末調(diào)研測(cè)試試題、高二數(shù)學(xué)(選物理方向) 題型:044

在二項(xiàng)式(axm+bxn)12(a>0,b>0,mn≠0)中有2m+n=0.

(1)在二項(xiàng)式的展開(kāi)式中常數(shù)項(xiàng)是第幾項(xiàng)?

(2)如果它的展開(kāi)式中系數(shù)最大的項(xiàng)恰是常數(shù)項(xiàng),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(axm+bxn)12?中,a>0,b>0,mn≠0且2m+n=0.如果它的展開(kāi)式里最大系數(shù)項(xiàng)為常數(shù)項(xiàng),求它是第幾項(xiàng)?并求此時(shí)的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(axm+bxn)12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展開(kāi)式里最大系數(shù)項(xiàng)恰是常數(shù)項(xiàng).

(1)求它是第幾項(xiàng)?

(2)求的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案