已知圓C:(x-3)2+(y-4)2=1,點A(-1,0),B(1,0),點P為圓上的動點,則d=|PA|2+|PB|2的最大值為________,最小值為________.

 

74 34

【解析】設(shè)點P(x0,y0),則d=(x0+1)2+y02+(x0-1)2+y02=2(x02+y02)+2,欲求d的最值,只需求u=x02+y02的最值,即求圓C上的點到原點的距離平方的最值.圓C上的點到原點的距離的最大值為6,最小值為4,故d的最大值為74,最小值為34.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:填空題

直線=1與x,y軸交點的中點的軌跡方程是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-5橢圓(解析版) 題型:解答題

已知F1,F(xiàn)2是橢圓C:=1(a>b>0)的左、右焦點,點P(-,1)在橢圓上,線段PF2與y軸的交點M滿足=0.

(1)求橢圓C的方程;

(2)橢圓C上任一動點N(x0,y0)關(guān)于直線y=2x的對稱點為N1(x1,y1),求3x1-4y1的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:解答題

已知圓A:x2+y2-2x-2y-2=0.

(1)若直線l:ax+by-4=0平分圓A的周長,求原點O到直線l的距離的最大值;

(2)若圓B平分圓A的周長,圓心B在直線y=2x上,求符合條件且半徑最小的圓B的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

若圓C:x2+y2+2x-4y+3=0關(guān)于直線2ax+by+6=0對稱,則由點M(a,b)向圓所作的切線長的最小值是(  )

A.2 B.3 C.4 D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:解答題

已知以點P為圓心的圓經(jīng)過點A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點C和D,且|CD|=4.

(1)求直線CD的方程;

(2)求圓P的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-3圓的方程(解析版) 題型:選擇題

若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標(biāo)準(zhǔn)方程是(  )

A.(x-2)2+(y-1)2=1 B.(x-2)2+(y-3)2=1

C.(x-3)2+(y-2)2=1 D.(x-3)2+(y-1)2=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點坐標(biāo)與距離公式(解析版) 題型:選擇題

直線l1的斜率為2,l1∥l2,直線l2過點(-1,1)且與y軸交于點P,則P點坐標(biāo)為(  )

A.(3,0) B.(-3,0) C.(0,-3) D.(0,3)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):7-6空間向量及運算(解析版) 題型:選擇題

如圖所示,已知空間四邊形OABC中,|OB|=|OC|,且∠AOB=∠AOC,則、夾角θ的余弦值為(  )

A.0 B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案