4.(1)在Rt ABC 中,CA CB,斜邊AB 上的高為 h,則$\frac{1}{{h}^{2}}$ $\frac{1}{C{A}^{2}}$ $\frac{1}{C{B}^{2}}$,類比此性質(zhì),如圖,在四面體 PABC中,若 PA,PB,PC兩兩垂直,底面ABC上的高為 h,可猜想得到的結(jié)論為$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$.
(2)證明(1)問中得到的猜想.

分析 立體幾何中的類比推理主要是基本元素之間的類比:平面?空間,點(diǎn)?點(diǎn)或直線,直線?直線或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關(guān)系式類比立體中兩兩垂直的棱的三棱錐中邊與高的關(guān)系即可.

解答 解:(1)∵在平面上的性質(zhì),若Rt△ABC的斜邊AB上的高為h,則有 $\frac{1}{{h}^{2}}$=$\frac{1}{C{A}^{2}}$+$\frac{1}{C{B}^{2}}$.”
我們類比到空間中,可以類比推斷出:
在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,有:$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$
(2)∵PA、PB、PC兩兩互相垂直,
∴PA⊥平面PBC.
設(shè)PD在平面PBC內(nèi)部,且PD⊥BC,PA,PB,PC分別為a,b,c,
由已知有:PD=$\frac{bc}{\sqrt{^{2}+{c}^{2}}}$,h=PO=$\frac{a•PD}{\sqrt{{a}^{2}+P{D}^{2}}}$,
∴h2=$\frac{{a}^{2}^{2}{c}^{2}}{{a}^{2}^{2}+^{2}{c}^{2}+{c}^{2}{a}^{2}}$,即$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$.

點(diǎn)評 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.i為虛數(shù)單位,復(fù)數(shù)$\frac{1+3i}{1-i}$=( 。
A.-1+2iB.1-2iC.-1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知x,y滿足$\left\{\begin{array}{l}x+y-2≥0\\ x+2y-4≤0\\ x-3≤0\end{array}\right.$,則3x-2y的最大值為(  )
A.-4B.8C.11D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,2Sn=an+1,則an+1=(  )
A.2n-1B.2n-1C.2×3n-1D.$\frac{1}{2}({{3^n}-1})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如果一個數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于3,則稱這個數(shù)列為“S型數(shù)列”.
(1)已知數(shù)列{an}滿足a1=4,a2=8,an+an-1=8n-4(n≥2,n∈N*),求證:數(shù)列{an}是“S型數(shù)列”;
(2)已知等比數(shù)列{an}的首項(xiàng)與公比q均為正整數(shù),且{an}為“S型數(shù)列”,記bn=$\frac{3}{4}$an,當(dāng)數(shù)列{bn}不是“S型數(shù)列”時,求數(shù)列{an}的通項(xiàng)公式;
(3)是否存在一個正項(xiàng)數(shù)列{cn}是“S型數(shù)列”,當(dāng)c2=9,且對任意大于等于2的自然數(shù)n都滿足($\frac{1}{n}$-$\frac{1}{n+1}$)(2+$\frac{1}{{c}_{n}}$)≤$\frac{1}{{c}_{n-1}}$+$\frac{1}{{c}_{n}}$≤($\frac{1}{n}$-$\frac{1}{n+1}$)(2+$\frac{1}{{c}_{n-1}}$)?如果存在,給出數(shù)列{cn}的一個通項(xiàng)公式(不必證明);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題$p:?x∈R,sinx+cosx≤\sqrt{2}$,命題$q:?{x_0}∈R,{2^{x_0}}<x_0^2$,下列四個命題:p∨(?q),(?p)∧q,(?p)∨(?q),p∧q中真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)$f(x)=sin(x+\frac{7π}{4})+cos(x-\frac{3π}{4})$則( 。
A.y=f(x)的最小正周期是π,其圖象關(guān)于$x=-\frac{π}{4}$對稱
B.y=f(x)的最小正周期是2π,其圖象關(guān)于$x=\frac{π}{2}$對稱
C.y=f(x)的最小正周期是π,其圖象關(guān)于$x=\frac{π}{2}$對稱
D.y=f(x)的最小正周期是2π,其圖象關(guān)于$x=-\frac{π}{4}$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知角θ在第二象限,且$|{sin\frac{θ}{2}}|=-sin\frac{θ}{2}$,則 $\frac{θ}{2}$在(  )
A.第一象限或第三象限B.第二象限或第四象限
C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若數(shù)列{an}滿足${a_1}=2,{a_n}=1-\frac{1}{{{a_{n-1}}}}$,則a2017=2.

查看答案和解析>>

同步練習(xí)冊答案