長方形中,,.以的中點為坐標(biāo)原點,建立如圖所示的直角坐標(biāo)系.
(1) 求以、為焦點,且過、兩點的橢圓的標(biāo)準方程;
(2) 過點的直線交(1)中橢圓于兩點,是否存在直線,使得以線段為直徑的圓恰好過坐標(biāo)原點?若存在,求出直線的方程;若不存在,請說明理由.
(1);(2) 存在過的直線:,理由見解析.
解析試題分析:(1)由題意可得點的坐標(biāo),設(shè)出橢圓的標(biāo)準方程,根據(jù)題意知,求得,進而根據(jù)和的關(guān)系求得,則橢圓的方程可得;(2)設(shè)直線的方程為.與橢圓方程聯(lián)立,設(shè)兩點坐標(biāo)分別為.根據(jù)韋達定理求得和,進而根據(jù)若以為直徑的圓恰好過原點,推斷則,得知,根據(jù)求得代入即可求得,最后檢驗看是否符合題意.
(1)由題意可得點的坐標(biāo)分別為.
設(shè)橢圓的標(biāo)準方程是.
,.
.
橢圓的標(biāo)準方程是
(2) 由題意直線的斜率存在,可設(shè)直線的方程為.
聯(lián)立方程,消去整理得.
設(shè)兩點的坐標(biāo)分別為
∴.
若以為直徑的圓恰好過原點,則,所以,
所以,,即.
所以,即
得滿足,
所以直線的方程為,或.
故存在過的直線:使得以弦為直徑的圓恰好過原點.
考點:1、橢圓的標(biāo)準方程;2、直線的一般式方程;3、直線與圓相交的性質(zhì);4、直線與圓錐曲線的綜合問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的一個焦點為,且離心率為.
(1)求橢圓方程;
(2)斜率為的直線過點,且與橢圓交于兩點,為直線上的一點,若△為等邊三角形,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,已知圓心在第二象限、半徑為2的圓C與直線y=x相切于坐標(biāo)原點O,橢圓+=1與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程.
(2)試探究圓C上是否存在異于原點的點Q,使Q到橢圓的右焦點F的距離等于線段OF的長,若存在,請求出Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)設(shè)A,B是橢圓C上的兩點,△AOB的面積為.若A、B兩點關(guān)于x軸對稱,E為線段AB的中點,射線OE交橢圓C于點P.如果=t,求實數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標(biāo)準方程;
(Ⅱ)是否存在與橢圓交于兩點的直線:,使得成立?若存在,求出實數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓E ,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)點,,點G是軌跡上的一個動點,直線AG與直線相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知動點到點的距離為,到軸的距離為,且.
(1)求點的軌跡的方程;
(2) 若直線斜率為1且過點,其與軌跡交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的右焦點為,短軸的一個端點到的距離等于焦距.
(1)求橢圓的方程;
(2)過點的直線與橢圓交于不同的兩點,,是否存在直線,使得△與△的面積比值為?若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
我們將不與拋物線對稱軸平行或重合且與拋物線只有一個公共點的直線稱為拋物線的切線,這個公共點稱為切點.解決下列問題:
已知拋物線上的點到焦點的距離等于4,直線與拋物線相交于不同的兩點、,且(為定值).設(shè)線段的中點為,與直線平行的拋物線的切點為..
(1)求出拋物線方程,并寫出焦點坐標(biāo)、準線方程;
(2)用、表示出點、點的坐標(biāo),并證明垂直于軸;
(3)求的面積,證明的面積與、無關(guān),只與有關(guān).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com