5.點(diǎn)P在邊長(zhǎng)為1的正方形ABCD內(nèi)運(yùn)動(dòng),則動(dòng)點(diǎn)P到定點(diǎn)A的距離小于1的概率為$\frac{π}{4}$.

分析 由題意作出圖象,求出四分之一圓的面積和正方形的面積,由概率公式可得.

解答 解:如圖所示滿足題意的點(diǎn)P在以A為圓心1為半徑的四分之一圓內(nèi),
∴四分之一圓的面積S=$\frac{1}{4}$π,正方形的面積S′=1
∴所求概率P=$\frac{S}{S′}$=$\frac{π}{4}$
故答案為:$\frac{π}{4}$

點(diǎn)評(píng) 本題考查幾何概型,涉及圓的面積公式,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知N(1,0),動(dòng)點(diǎn)M滿足$k+{(\overrightarrow{OM})^2}=1+K{(\overrightarrow{OM}•\overrightarrow{ON})^2}$,k∈R,其中O是坐標(biāo)原點(diǎn),
(1)求動(dòng)點(diǎn)M的軌跡方程,并判斷曲線類型;
(2)如果動(dòng)點(diǎn)M的軌跡是一條圓錐曲線,其離心率e滿足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列說法正確的是( 。
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”
B.命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0則x≠0或y≠0”
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.“x=-1”是“x2-5x-6=0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列對(duì)應(yīng)是從集合S到T的映射的是( 。
A.S=N,T={-1,1},對(duì)應(yīng)法則是n→(-1)n,n∈S
B.S={x|x∈R},T={y|y∈R},對(duì)應(yīng)法則是x→y=$\frac{1+x}{1-x}$
C.S={0,1,2,5},T={1,$\frac{1}{2}$,$\frac{1}{5}$},對(duì)應(yīng)法則是取倒數(shù)
D.S={0,1,4,9},T={-3,-2,-1,0,1,2,3},對(duì)應(yīng)法則是開平方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)p:函數(shù)f(x)=log2(ax2-x+a)的值域?yàn)镽,q:(log2x)2-4log2x+a+2≥0對(duì)x∈[$\frac{1}{4}$,1]恒成立,若p且q為假,p或q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,動(dòng)物園要圍成相同面積的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其他各面用鋼筋網(wǎng)圍成.現(xiàn)有可圍36m長(zhǎng)網(wǎng)的材料,每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間虎籠的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正四面體ABCD的棱長(zhǎng)為9,點(diǎn)P是三角形ABC內(nèi)(含邊界)的一個(gè)動(dòng)點(diǎn)滿足P到面DAB、面DBC、面DCA的距離成等差數(shù)列,則點(diǎn)P到面DCA的距離最大值為2$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)y=f(x)是定義域?yàn)镈,且f(x)同時(shí)滿足以下條件:
①f(x)在D上是單調(diào)函數(shù);
②存在閉區(qū)間[a,b]?D(其中a<b),使得當(dāng)x∈[a,b]時(shí),f(x)的取值集合也是[a,b].則稱函數(shù)y=f(x)(x∈D)是“合一函數(shù)”.
(1)請(qǐng)你寫出一個(gè)“合一函數(shù)”;
(2)若f(x)=$\sqrt{x+1}$+m是“合一函數(shù)”,求實(shí)數(shù)m的取值范圍.
(注:本題求解中涉及的函數(shù)單調(diào)性不用證明,直接指出是增函數(shù)還是減函數(shù)即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=$\frac{x+2}{x+1}$的值域是(-∞,1)∪(1,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案