拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊.
(1)求證:直線與拋物線總有兩個交點;
(2)設直線與拋物線的交點為Q、R,OQ⊥OR,
求p關(guān)于m的函數(shù)f(m)的表達式;
(3)在(2)的條件下,若拋物線焦點F到直線x+y=m的距離為數(shù)學公式,
求此直線的方程.

解:(1)拋物線y2=p(x+1)的準線方程是x=-1-,
直線x+y=m與x軸的交點為(m,0),
題設交點在準線右邊,
得m>-1-,即4m+p+4>0.
,
得x2-(2m+p)x+(m2-p)=0.
而判別式△=(2m+p)2-4(m2-p)=p(4m+p+4).
又p>0及4m+p+4>0,
可知△>0.
因此,直線與拋物線總有兩個交點; …(4分)
(2)設Q、R兩點的坐標分別為(x1,y1)、(x2,y2),
由(1)知,x1、x2是方程x2-(2m+p)x+m2-p=0的兩根,
∴x1+x2=2m+p,x1•x2=m2-p.
由OQ⊥OR,得kOQ•kOR=-1,
即有x1x2+y1y2=0.
又Q、R為直線x+y=m上的點,
因而y1=-x1+m,y2=-x2+m.
于是x1x2+y1y2=2x1x2-m(x1+x2)+m2=2(m2-p)-m(2m+p)+m2=0,
∴p=f(m)=
,
得m>-2,m≠0;…(9分)
(3)由于拋物線y2=p(x+1)的焦點F坐標為(-1+,0),
于是有,
即|p-4m-4|=4.
又p=,
∴||=4.
解得m1=0,m2=-,m3=-4,m4=-
但m≠0且m>-2,因而舍去m1、m2、m3
故所求直線方程為3x+3y+4=0.…(14分)
分析:(1)拋物線y2=p(x+1)的準線方程是x=-1-,直線x+y=m與x軸的交點為(m,0),由題設交點在準線右邊,得4m+p+4>0.由,得x2-(2m+p)x+(m2-p)=0.由此得到直線與拋物線總有兩個交點.
(2)設Q、R兩點的坐標分別為(x1,y1)、(x2,y2),由(1)知,x1、x2是方程x2-(2m+p)x+m2-p=0的兩根,所以x1+x2=2m+p,x1•x2=m2-p.由OQ⊥OR,得kOQ•kOR=-1,因而y1=-x1+m,y2=-x2+m.由此能求出函數(shù)f(m)的表達式.
(3)由于拋物線y2=p(x+1)的焦點F坐標為(-1+,0),得|p-4m-4|=4.由p=,知||=4.由此能夠推導出所求的直線方程.
點評:本題主要考查拋物線標準方程,簡單幾何性質(zhì),直線與拋物線的位置關(guān)系.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊.
(1)求證:直線與拋物線總有兩個交點;
(2)設直線與拋物線的交點為Q、R,OQ⊥OR,求p關(guān)于m的函數(shù)f(m)的表達式;
(3)在(2)的條件下,若m變化,使得原點O到直線QR的距離不大于
2
2
,求p的值的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊.
(1)求證:直線與拋物線總有兩個交點;
(2)設直線與拋物線的交點為Q、R,OQ⊥OR,
求p關(guān)于m的函數(shù)f(m)的表達式;
(3)在(2)的條件下,若拋物線焦點F到直線x+y=m的距離為
2
2

求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊.
(1)求證:直線與拋物線總有兩個交點;
(2)設直線與拋物線的交點為Q、R,OQ⊥OR,求p關(guān)于m的函數(shù)f(m)的表達式;
(3)在(2)的條件下,若m變化,使得原點O到直線QR的距離不大于數(shù)學公式,求p的值的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年福建省莆田四中高二(上)模塊數(shù)學試卷(理科)(解析版) 題型:解答題

拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊.
(1)求證:直線與拋物線總有兩個交點;
(2)設直線與拋物線的交點為Q、R,OQ⊥OR,求p關(guān)于m的函數(shù)f(m)的表達式;
(3)在(2)的條件下,若m變化,使得原點O到直線QR的距離不大于,求p的值的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年福建省莆田四中高二(上)模塊數(shù)學試卷(文科)(解析版) 題型:解答題

拋物線方程為y2=p(x+1)(p>0),直線x+y=m與x軸的交點在拋物線的準線的右邊.
(1)求證:直線與拋物線總有兩個交點;
(2)設直線與拋物線的交點為Q、R,OQ⊥OR,
求p關(guān)于m的函數(shù)f(m)的表達式;
(3)在(2)的條件下,若拋物線焦點F到直線x+y=m的距離為
求此直線的方程.

查看答案和解析>>

同步練習冊答案