【題目】若函數(shù)f(x)為定義在R上的奇函數(shù).且滿足f(3)=6,當x>0時f′(x)>2,則不等式f(x)﹣2x<0的解集為

【答案】{x|x<3}
【解析】解:函數(shù)f(x)為定義在R上的奇函數(shù),且滿足f(3)=6,當x>0時,f′(x)>2,
令F(x)=f(x)﹣2x,則F′(x)=f′(x)﹣2>0,故F(x)在R上是增函數(shù).
∵f(3)=6,∴F(3)=f(3)﹣6=0,
不等式f(x)﹣2x<0,即F(x)<F(3),∴x<3,
故不等式f(x)﹣2x<0的解集為{x|x<3},
所以答案是:{x|x<3}.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)奇偶性的性質(zhì)的相關(guān)知識,掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】方程x2﹣xy﹣2y2=0表示的曲線為(
A.橢圓
B.雙曲線
C.圓
D.兩直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點M(﹣1,2,﹣3)關(guān)于原點的對稱點是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合設(shè)U={x|﹣3<x<3,x∈Z},A={1,2},B={﹣2,﹣1,2},則A∪UB=(
A.{1}
B.{1,2}
C.{2}
D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U={1,2,3,4,5},M={1,2,4},N={2,4,5},則(UM)∩(UN)等于(
A.{4}
B.{1,3}
C.{2,5}
D.{3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+2ax+4(0<a<3),若x1<x2 , x1+x2=0,則(
A.f(x1)<f(x2
B.f(x1)>f(x2
C.f(x1)=f(x2
D.f(x1)與f(x2)的大小不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量η=3ξ+2,且Dξ=2,則Dη=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f (2﹣x)=f(x)當x∈[0,1]時,f (x)=ex , 若函數(shù)y=[f (x)]2+(m+l)f(x)+n在區(qū)間[﹣k,k](k>0)內(nèi)有奇數(shù)個零點,則m+n=(
A.﹣2
B.0
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線y=x3﹣2x+1在點(1,0)處的切線方程為(
A.y=x﹣1
B.y=﹣x+1
C.y=2x﹣2
D.y=﹣2x+2

查看答案和解析>>

同步練習冊答案