已知
a
b
均為單位向量,其夾角為θ,有下列四個命題:
P1:|
a
+
b
|>1?θ∈[0,
3
);P2:|
a
+
b
|>1?θ∈(
3
,π];P3:|
a
+
b
|>1?θ∈[0,
π
3
);P4:|
a
+
b
|>1?θ∈(
π
3
,0].
其中所有真命題的序號是
P1
P1
分析:利用向量的數(shù)量積與余弦函數(shù)的性質(zhì)即可作出正確判斷.
解答:解:∵|
a
|=|
b
|=1,其夾角為θ,
∴|
a
+
b
|>1?|
a
+
b
|
2
>1?1+1+2cosθ>1,
∴cosθ>-
1
2
,又0≤θ≤π,
∴0≤θ<
3

故正確答案為:P1
點評:本題考查命題的真假判斷與應(yīng)用,著重考查向量的數(shù)量積及余弦函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,它們的夾角為60°,|
a
-3
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,它們的夾角為60°,那么|
a
+3
b
|
=( 。
A、
7
B、
10
C、
13
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,其夾角為θ,有下列四個命題P1:|
a
+
b
|>1?θ∈[0,
3
);P2:|
a
+
b
|>1?θ∈(
3
,π];P3:|
a
-
b
|>1?θ∈[0,
π
3
);P4:|
a
-
b
|>1?θ∈(
π
3
,π];其中的真命題是( 。
A、P1,P4
B、P1,P3
C、P2,P3
D、P2,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
b
均為單位向量,它們的夾角為60°,則|
a
-3
b
|=(  )

查看答案和解析>>

同步練習(xí)冊答案