某人2002年底花100萬(wàn)元買了一套住房,其中首付30萬(wàn)元,70萬(wàn)元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計(jì)算,每月等額還貸一次,10年還清,并從貸款后的次月開(kāi)始還貸.
(1)這個(gè)人每月應(yīng)還貸多少元?
(2)為了抑制高房?jī)r(jià),國(guó)家出臺(tái)“國(guó)五條”,要求賣房時(shí)按照差額的20%繳稅.如果這個(gè)人現(xiàn)在將住房150萬(wàn)元賣出,并且差額稅由賣房人承擔(dān),問(wèn):賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)
(1)每月應(yīng)還貸7875元
(2)賣房人將獲利約155000元.

試題分析:(1)設(shè)出每月應(yīng)還錢數(shù)x元,算出貸款人120次支付給銀行的錢數(shù)(含利息),算出70萬(wàn)元經(jīng)過(guò)10年本利和,有兩數(shù)相等即可得到x的值;
(2)由每月還的貸款數(shù)乘以120得到賣房人支付給銀行的總錢數(shù),求出共支付的利息及差額稅,獲利等于差額減去利息再減去差額稅.
(1)設(shè)每月應(yīng)還貸x元,共付款12×10=120次,則有
x[1+(1+0.005)+(1+0.005)2+…+(1+0.005)119]=700000(1+0.005)120,
所以
(元).
答:每月應(yīng)還貸7875元.
(2)賣房人共付給銀行7875×120=945000元,
利息945000﹣700000=245000(元),
繳納差額稅(1500000﹣1000000)×0.2=100000(元),
獲利500000﹣(245000+100000)=155000(元).
點(diǎn)評(píng):本題考查了根據(jù)實(shí)際問(wèn)題選擇函數(shù)模型,解答的關(guān)鍵是讀懂題目意思,明確貸款人還的錢等同于存錢,也有利息,此題屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知定義在R上的奇函數(shù)滿足 (x≥0),若,則實(shí)數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)滿足:
(1) 在[a,b]內(nèi)是單調(diào)函數(shù);(2) 在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為的“和諧區(qū)間”.下列函數(shù)中存在“和諧區(qū)間”的是            (只需填符合題意的函數(shù)序號(hào))
; ②; ③; ④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?
(2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(x,y)在映射f作用下的象是(x+y,x-y),則象(2,-3)的原象是___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

稱一個(gè)函數(shù)是“好函數(shù)”當(dāng)且僅當(dāng)其滿足:定義在上;存在,使其在上單調(diào)遞增,在上單調(diào)遞減,則以下函數(shù)是“好函數(shù)”的有 
?;?;?;④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=-2sin x的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米 .

(1)用x表示墻AB的長(zhǎng);
(2)假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);
(3)當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)奇函數(shù)上是增函數(shù),且,若函數(shù)對(duì)所有的都成立,則當(dāng)時(shí)t的取值范圍是                  (   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案