20.函數(shù)$f(x)=(sinx+\sqrt{3}cosx)(cosx-\sqrt{3}sinx)$的最小正周期是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

分析 將函數(shù)打開(kāi)化簡(jiǎn)為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期即可.

解答 解:函數(shù)$f(x)=(sinx+\sqrt{3}cosx)(cosx-\sqrt{3}sinx)$=sinxcosx-$\sqrt{3}$sin2x+$\sqrt{3}$cos2x-3sinxcosx=$\sqrt{3}$cos2x-sin2x=2cos(2x+$\frac{π}{6}$).
最小正周期T=$\frac{2π}{|ω|}=\frac{2π}{2}=π$.
故選B.

點(diǎn)評(píng) 本題考查了三角函數(shù)的化簡(jiǎn)計(jì)算能力,二倍角和輔助角的運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知三角形ABC中,角A、B、C所對(duì)邊分別為a、b、c,滿足$C=\frac{π}{6}$且$b=4\sqrt{3}sinB$,則三角形ABC面積的最大值為6+3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.拋物線y2=12x的準(zhǔn)線與雙曲線$\frac{x^2}{4}-\frac{y^2}{12}=1$的兩條漸近線圍成的三角形的面積為(  )
A.6B.$6\sqrt{3}$C.9D.$9\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的上頂點(diǎn)為A,左右頂點(diǎn)為B,C,右焦點(diǎn)為F,|AF|=3,且△ABC的周長(zhǎng)為14.
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)M(4,0)的直線l與橢圓相交于不同兩點(diǎn)P,Q,點(diǎn)N在線段PQ上,設(shè)λ=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$,試判斷點(diǎn)N是否在一條定直線上,并求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為倡導(dǎo)節(jié)約用電,某地采用了階梯電價(jià)計(jì)費(fèi)方法,具體為:每戶每月用電量不超過(guò)a度的每度0.6元;每戶每月用電量超過(guò)a度而不超過(guò)(a+120)度的,超出a度的部分每度0.65元;每戶每月電量超過(guò)(a+120)度的,超出(a+120)度的部分每度0.80元.
(1)寫(xiě)出每戶每月用電量x度與支付費(fèi)y元的函數(shù)關(guān)系;
(2)調(diào)查了該地120戶家庭去年的月平均用電量,結(jié)果如下表:
月平均用電量x(度)90140200260320
頻數(shù)1030303020
這120戶的月平均用電量的各頻率視為該地每戶月平均用電量的概率,若取a=1 80,用Y表示該地每戶的月平均用電費(fèi)用,求Y的分布列和數(shù)學(xué)期望(精確到元)
(3)今年用電形勢(shì)嚴(yán)峻,該地政府決定適當(dāng)下調(diào)a的值(170<a<180),小明家響應(yīng)政府號(hào)召節(jié)約用電,預(yù)計(jì)他家今年的月平均電費(fèi)為l15.2元,并且他家的月平均用電量X的分布列為:
月用電量X(度)160300180
p $\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{3}$
請(qǐng)你求出今年調(diào)整的a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=alnx-$\frac{1}{2}{x^2}$+bx存在極小值,則有( 。
A.a<0,b>0B.a>0,b>0C.a<0,b<0D.a>0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}前n項(xiàng)和為Sn,a1=-2,且滿足Sn=$\frac{1}{2}$an+1+n+1(n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=log3(-an+1),求數(shù)列{$\frac{1}{{_{n}b}_{n+2}}$}前n項(xiàng)和為T(mén)n,求證Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知等差數(shù)列{an}滿足:a1+a5=4,則數(shù)列{2${\;}^{{a}_{n}}$}的前5項(xiàng)之積為1024(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)M(0,1)的橢圓 Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$
(1)求橢圓 Γ的方程;
(2)已知直線l不過(guò)點(diǎn)M,與橢圓 Γ相交于P,Q兩點(diǎn),若△MPQ的外接圓是以PQ為直徑,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案