過(guò)拋物線y2=2px焦點(diǎn)F作直線l交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△ABO為(  )
A.銳角三角形B.直角三角形C.不確定D.鈍角三角形
設(shè)過(guò)A,B的坐標(biāo)為(x1,y1),(x2,y2),
OA
OB
=(x1y1)(x2,y2)=x1x1+y1y2=
(y1y2)2
4p2
+y1y2=
p4
4p2
-p2=-
3
4
p2
<0,即
OA
OB
<0
,∴三角形為鈍角三角形.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線C:x2-
y2
2
=1
,過(guò)點(diǎn)P(-1,-2)的直線交C于A,B兩點(diǎn),且點(diǎn)P為線段AB的中點(diǎn).
(1)求直線AB的方程;
(2)求弦長(zhǎng)|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)(1,
q
2
)
,且離心率e=
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N,且線段MN的垂直平分線過(guò)定點(diǎn)G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(A題)如圖,在橢圓
x2
a2
+
y2
8
=1(a>0)中,F(xiàn)1,F(xiàn)2分別是橢圓的左右焦點(diǎn),B,D分別為橢圓的左右頂點(diǎn),A為橢圓在第一象限內(nèi)弧上的任意一點(diǎn),直線AF1交y軸于點(diǎn)E,且點(diǎn)F1,F(xiàn)2三等分線段BD.
(1)若四邊形EBCF2為平行四邊形,求點(diǎn)C的坐標(biāo);
(2)設(shè)m=
S△AF1O
S△AEO
,n=
S△CF1O
S△CEO
,求m+n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1、F2在x軸上,長(zhǎng)軸A1A2的長(zhǎng)為4,左準(zhǔn)線l與x軸的交點(diǎn)為M,
MA1
=2
A1F1

(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M的直線l'與橢圓交于C、D兩點(diǎn),若
OC
OD
=0
,求直線l'的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

雙曲線
x2
v
-
y2
圖6
=圖
的右焦點(diǎn)是拋物線的焦點(diǎn),則拋物線的標(biāo)準(zhǔn)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線l過(guò)拋物線y2=2px(p>0)的焦點(diǎn),且交拋物線于A,B兩點(diǎn),交其準(zhǔn)線于C點(diǎn),已知|AF|=4,
CB
=3
BF
,則p=( 。
A.2B.
4
3
C.
8
3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線AP與BP的斜率之積為-
1
2
,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|>
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩定點(diǎn)E(-
2
,0),F(xiàn)(
2
,0)
,動(dòng)點(diǎn)P滿足
PE
PF
=0
,由點(diǎn)P向x軸作垂線PQ,垂足為Q,點(diǎn)M滿足
PM
=(
2
-1)
MQ
,點(diǎn)M的軌跡為C.
(I)求曲線C的方程;
(II)若線段AB是曲線C的一條動(dòng)弦,且|AB|=2,求坐標(biāo)原點(diǎn)O到動(dòng)弦AB距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案