4.若曲線C為到點(diǎn)(0,1)和(0,-1)距離之和為4的動(dòng)點(diǎn)的軌跡,則曲線C的方程為$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

分析 利用已知條件,結(jié)果橢圓的定義,先求出焦點(diǎn)位置和a,c的值,由此能求出橢圓方程.

解答 解:∵曲線C為到點(diǎn)(0,1)和(0,-1)距離之和為4,
∴動(dòng)點(diǎn)的軌跡就是橢圓,焦點(diǎn)在y軸上,c=1,2a=4,
∴a=2,
∴b2=a2-c2=3,
∴動(dòng)點(diǎn)的軌跡方程為$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.
故答案為:$\frac{{y}^{2}}{4}+\frac{{x}^{2}}{3}$=1.

點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程的求法,解題時(shí)要熟練掌握橢圓的定義和性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的通項(xiàng)公式an=$\frac{an}{bn+1}$,且a2=$\frac{6}{5}$,a3=$\frac{9}{7}$.
(1)求an
(2)求證:an<an+1;
(3)求證:an∈[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知tanα=$\frac{1}{3}$,計(jì)算:$\frac{1}{{2sinαcosα+{{cos}^2}α}}$.
(2)已知平行四邊形ABCD的對(duì)角線AC和BD相交于O,且$\overrightarrow{OA}$=$\overrightarrow a$,$\overrightarrow{OB}$=$\overrightarrow b$用向量$\overrightarrow a$,$\overrightarrow b$表示向量$\overrightarrow{OC}$,$\overrightarrow{OD}$,$\overrightarrow{DC}$,$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若集合 A={x||x+1|=x+1},B={x|x2+x<0},則 A∩B=( 。
A.(-1,0)B.[-1,0)C.(-1,0)D.[-1,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,PC切⊙O于點(diǎn)C,割線PAB經(jīng)過(guò)圓心D,作∠BPC的平分線交CB于點(diǎn)D.
(1)求證:CD=CE.
(2)若PA=2,PC=5,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.(理科)已知極坐標(biāo)中圓C的方程為ρ=2cos(θ-$\frac{π}{4}$),則圓心的極坐標(biāo)為(  )
A.(1,$\frac{π}{4}$)B.(1,$\frac{3π}{4}$)C.(1,$\frac{π}{4}$)D.(1,$\frac{3π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.
(1)若A∪B=A,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈Z時(shí),求A的非空真子集的個(gè)數(shù);
(3)當(dāng)x∈R時(shí),若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣質(zhì)量重度污染,某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;
(2)設(shè)此人停留期間空氣質(zhì)量至少有1天為優(yōu)良的事件的概率.
(3)由圖判斷從哪天開(kāi)始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知一平面與一正方體的12條棱的所成角都等于α,則sinα=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案