14.設(shè)F1,F(xiàn)2分別是橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過點(diǎn)F1(-c,0)的直線交橢圓E于A,B兩點(diǎn),若|AF1|=3|F1B|,且AB⊥AF2,則橢圓E的離心率是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

分析 在△AF1F2中和在△ABF2中,分別利用勾股定理求得,再根據(jù)條件列出等式求解.

解答 解:設(shè)|F1B|=k(k>0),則|AF1|=3k,|AB|=4k,
∴|AF2|=2a-3k,|BF2|=2a-k
∵AB⊥AF2,∴|BF2|2=|AF2|2+|AB|2,故a=3k,
∴△AF1F2是等腰直角三角形,⇒c=$\frac{\sqrt{2}}{2}a$,橢圓E的離心率e=$\frac{c}{a}=\frac{\sqrt{2}}{2}$.
故選:D.

點(diǎn)評 本題考查了橢圓的離心率,合理利用橢圓的定義是解題關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a>0,b>0,$\frac{1}{a}$+$\frac{4}$=2,則y=4a+b的最小值是( 。
A.8B.6C.2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ex+mx-3,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=-2.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x>0時,若不等式(t-x)ex<t+2恒成立,求實(shí)數(shù)t的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:方程$\frac{{y}^{2}}{m}$$+\frac{{x}^{2}}{3}$=1表示的焦點(diǎn)在y軸上的橢圓;命題q:方程$\frac{{x}^{2}}{m+2}$$-\frac{{y}^{2}}{m-4}$=1表示的曲線是雙曲線,若“p∧q”為假命題且“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知命題p:對?x∈R,均有ax2+ax+1>0恒成立;命題q:雙曲線的標(biāo)準(zhǔn)方程是$\frac{{x}^{2}}{1-a}$$+\frac{{y}^{2}}{a-3}$=1,若p∧q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(diǎn)(1,2),且與原點(diǎn)距離最大的直線方程是( 。
A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖是某賽季甲、乙兩名籃球運(yùn)動員每場比賽得分的莖葉圖,則甲、乙兩人這幾場比賽得分的中位數(shù)之和是( 。
A.65B.64C.63D.62

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知A⊆B,A⊆C,B={1,2,3,4,5},C={0,2,4,6,8},則A不可能是( 。
A.{1,2}B.{2,4}C.{2}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知不等式ln(x+1)-1≤ax+b對一切x>-1都成立,則$\frac{a}$的最小值是1-e-3

查看答案和解析>>

同步練習(xí)冊答案