精英家教網 > 高中數學 > 題目詳情
班主任為了對本班學生的考試成績進行分析,從全班50名同學中按男生、女生用分層抽樣的方法隨機地抽取一個容量為10的樣本進行分析,已知抽取的樣本中男生人數為6,則班內女生人數為
20
20
分析:設班內女生人數為x,則由分層抽樣的定義和方法可得
6
50-x
=
4
x
,由此解得x的值.
解答:解:設班內女生人數為x,則由分層抽樣的定義和方法可得
6
50-x
=
4
x
,解得 x=20,
故答案為 20.
點評:本題主要考查分層抽樣的定義和方法,利用了總體中每個個體被抽到的概率都相等,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25位女同學,15位男同學中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,則樣本中男、女生各有多少人;
(2)隨機抽取8位同學,數學分數依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定80分(含80分)以上為良好,90分(含90分)以上為優(yōu)秀,在良好的條件下,求兩科均為優(yōu)秀的概率;
②若這8位同學的數學、物理分數事實上對應下表:精英家教網
根據上表數據可知,變量y與x之間具有較強的線性相關關系,求出y與x的線性回歸方程(系數精確到0.01).(參考公式:
y
=bx+a,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;參考數據:
.
x
=77.5
,
.
y
=84.875
,
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
,
1050
≈32.4
,
457
≈21.4
,
550
≈23.5

查看答案和解析>>

科目:高中數學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25位女同學,15位男同學中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本(只要求寫出算式即可,不必計算出結果);
(2)隨機抽取8位同學,
數學分數依次為:60,65,70,75,80,85,90,95;
物理成績依次為:72,77,80,84,88,90,93,95,
①若規(guī)定90分(含90分)以上為優(yōu)秀,記ξ為這8位同學中數學和物理分數均為優(yōu)秀的人數,求ξ的分布列和數學期望;
②若這8位同學的數學、物理分數事實上對應下表:
學生編號 1 2 3 4 5 6 7 8
數學分數x 60 65 70 75 80 85 90 95
物理分數y 72 77 80 84 88 90 93 95
根據上表數據可知,變量y與x之間具有較強的線性相關關系,求出y與x的線性回歸方程(系數精確到0.01).(參考公式:
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;參考數據:
.
x
=77.5
,
.
y
=84.875
,
8
i=1
(xi-
.
x
)
2
≈1050
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
,
1050
≈32.4
,
457
≈21.4
,
550
≈23.5

查看答案和解析>>

科目:高中數學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25名女同學,15名男同學中隨機抽取一個容量為8的樣本進行分析.
(1)如果按性別比例分層抽樣,男、女生各抽取多少名才符合抽樣要求?
(2)隨機抽出8名,他們的數學、物理分數對應如下表:
學生編號 1 2 3 4 5 6 7 8
數學分數x 60 65 70 75 80 85 90 95
物理分數y 72 77 80 84 88 90 93 95
(i)若規(guī)定85分以上為優(yōu)秀,在該班隨機調查一名同學,他的數學和物理分數均為優(yōu)秀的概率是多少?
(ii)根據上表數據,用變量y與x的相關系數或散點圖說明物理成績y與數學成績x之間線性相關關系的強弱.如果有較強的線性相關關系,求y與x的線性回歸方程(系數精確到0.01);如果不具有線性相關關系,說明理由.
參考公式:相關系數r=
n
i=a
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)2

回歸直線的方程是:
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
,a=
.
y
-b
.
x
,
yi
是與xi對應的回歸估計值.

查看答案和解析>>

科目:高中數學 來源: 題型:

班主任為了對本班學生的考試成績進行分析,決定從全班25名女同學,15名男同學中隨機抽取一個容量為8的樣本進行分析.
(I)如果按性別比例分層抽樣,男、女生各抽取多少名才符合抽樣要求?
(II)隨機抽出8名,他們的數學、物理分數對應如下表:
學生編號 1 2 3 4 5 6 7 8
數學分數x 60 65 70 75 80 85 90 95
物理分數y 72 77 80 84 88 90 93 95
(i)若規(guī)定85分以上(包括85分)為優(yōu)秀,在該班隨機調查一名同學,他的數學和物理分數均為優(yōu)秀的概率是多少?
(ii)根據上表數據,用變量y與x的相關系數或散點圖說明物理成績y與數學成績x之間線性相關關系的強弱.如果有較強的線性相關關系,求y與x的線性回歸方程(系數精確到0.01);如果不具有線性相關關系,說明理由.
參考公式:相關系數r=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
n
i=1
(yi-
.
y
)
2
;
回歸直線的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
?
y
i
是與xi對應的回歸估計值.
參考數據:
.
x
=77.5,
.
y
=84.875
8
i=1
(xi-
.
x
)
2
≈1050
,
8
i=1
(yi-
.
y
)
2
≈457
8
i=1
(xi-
.
x
)(yi-
.
y
)≈688
1050
≈32.4
,
457
≈21.4
550
≈23.5

查看答案和解析>>

同步練習冊答案