17.某校高一、高二和高三年級分別有學(xué)生1000名、800名和700名,現(xiàn)用分層抽樣的方法從中抽取容量為100的樣本,則抽出的高二年級的學(xué)生人數(shù)為32.

分析 先求出每個個體被抽到的概率,用高三年級的人數(shù)乘以每個個體被抽到的概率,即得高三年級應(yīng)抽取人數(shù).

解答 解:每個個體被抽到的概率等于 $\frac{100}{700+800+1000}$=$\frac{1}{25}$,
由于高二年級有1000人,故高三年級應(yīng)抽取的人數(shù)為 800×$\frac{1}{25}$=32,
故答案為 32.

點評 本題主要考查分層抽樣的定義和方法,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應(yīng)抽取的個體數(shù),屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.閱讀如圖的算法框圖,輸出的結(jié)果S的值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.0D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列命題中正確的有②④.(填上所有正確命題的序號)
①一質(zhì)點在直線上以速度v=3t2-2t-1(m/s)運動,從時刻t=0(s)到t=3(s)時質(zhì)點運動的路程為15(m);
②若x∈(0,π),則sinx<x;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
④已知函數(shù)$f(x)=\sqrt{-{x^2}+4x}$,則$\int{\begin{array}{l}2\\ 0\end{array}}f(x)dx=π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=2x2-7,則f(-2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.等差數(shù)列{an}的公差為d,關(guān)于x的不等式${a_1}{x^2}+({\fractd31hbr{2}-{a_1}})x+c≥0$的解集為$[{\frac{1}{3},\frac{4}{5}}]$,則使數(shù)列{an}的前n項和Sn最小的正整數(shù)n的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}的前n項和Sn=n2,則a2016=4031.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在數(shù)列{an}中,a1=-1,an+1=an-3,則a4=( 。
A.-10B.-7C.-5D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-2y+1≥0\end{array}\right.$,則目標函數(shù)z=2x+y的最大值是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a>0,b>0,a+b=2,則下列不等式命題中正確的個數(shù)是( 。
(1)ab≤1  (2)$\sqrt{2a+1}$+$\sqrt{2b+1}$$≤2\sqrt{2}$  (3)a2+b2≥2  (4)a3+b3≥3  (5)$\frac{1}{a}+\frac{1}≥2$  (6)$\frac{5-2ab}{{a}^{2}+^{2}}≤\frac{3}{2}$(7)a4+b4∈[2,16)(8)a2+2b2∈[$\frac{8}{3}$,8)(9)(a+$\frac{1}{a}$)(b+$\frac{1}$)≥4  (10)(a-$\frac{2}$)(b+$\frac{1}{a}$)≤-2.
A.5個B.6個C.7個D.8個

查看答案和解析>>

同步練習(xí)冊答案