【題目】已知曲線的參數(shù)方程為為參數(shù)),在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.設(shè)點(diǎn)的極坐標(biāo)為.

1)求曲線的極坐標(biāo)方程;

2)若過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn),求的值.

【答案】(1)的極坐標(biāo)方程為:(2)

【解析】

(1) 由曲線的參數(shù)方程得出其普通方程,利用坐標(biāo)變換得出的方程,再轉(zhuǎn)化為極坐標(biāo)方程;

(2)利用直線的參數(shù)方程的參數(shù)的幾何意義求解即可.

解:(1)曲線的普通方程為:,

將曲線上的點(diǎn)按坐標(biāo)變換得到,代入的方程為:.

化為極坐標(biāo)方程為:.

2)點(diǎn)在直角坐標(biāo)的坐標(biāo)為,

因?yàn)橹本過點(diǎn)且傾斜角為,

設(shè)直線的參數(shù)方程為為參數(shù)),

代入得:.

設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,

.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若,判斷函數(shù)的單調(diào)性;

(2)討論函數(shù)的極值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,又有四個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有四個(gè)函數(shù)yx|sinx|yxcos|x|,yxln|x|的部分圖象如下,但順序被打亂,則按照?qǐng)D象從左到右的順序,對(duì)應(yīng)的函數(shù)序號(hào)正確的一組是( )

A.①④②③B.①④③②C.③②④①D.③④②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】201911月份,全國(guó)工業(yè)生產(chǎn)者出廠價(jià)格同比下降,環(huán)比下降某企業(yè)在了解市場(chǎng)動(dòng)態(tài)之后,決定根據(jù)市場(chǎng)動(dòng)態(tài)及時(shí)作出相應(yīng)調(diào)整,并結(jié)合企業(yè)自身的情況作出相應(yīng)的出廠價(jià)格,該企業(yè)統(tǒng)計(jì)了20191~10月份產(chǎn)品的生產(chǎn)數(shù)量(單位:萬(wàn)件)以及銷售總額(單位:十萬(wàn)元)之間的關(guān)系如下表:

2.08

2.12

2.19

2.28

2.36

2.48

2.59

2.68

2.80

2.87

4.25

4.37

4.40

4.55

4.64

4.75

4.92

5.03

5.14

5.26

1)計(jì)算的值;

2)計(jì)算相關(guān)系數(shù),并通過的大小說(shuō)明之間的相關(guān)程度;

3)求的線性回歸方程,并推測(cè)當(dāng)產(chǎn)量為3.2萬(wàn)件時(shí)銷售額為多少.(該問中運(yùn)算結(jié)果保留兩位小數(shù))

附:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為;

相關(guān)系數(shù).

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】田忌賽馬是《史記》中記載的一個(gè)故事,說(shuō)的是齊國(guó)大將軍田忌經(jīng)常與齊國(guó)眾公子賽馬,孫臏發(fā)現(xiàn)田忌的馬和其他人的馬相差并不遠(yuǎn),都分為上、中、下三等.于是孫臏給田忌將軍獻(xiàn)策:比賽即將開始時(shí),他讓田忌用下等馬對(duì)戰(zhàn)公子們的上等馬,用上等馬對(duì)戰(zhàn)公子們的中等馬,用中等馬對(duì)戰(zhàn)公子們的下等馬,從而使田忌贏得了許多賭注.假設(shè)田忌的各等級(jí)馬與某公子的各等級(jí)馬進(jìn)行一場(chǎng)比賽,田忌獲勝的概率如下表所示:

比賽規(guī)則規(guī)定:一次比賽由三場(chǎng)賽馬組成,每場(chǎng)由公子和田忌各出一匹馬參賽,結(jié)果只有勝和負(fù)兩種,并且毎一方三場(chǎng)賽馬的馬的等級(jí)各不相同,三場(chǎng)比賽中至少獲勝兩場(chǎng)的一方為最終勝利者.

1)如果按孫臏的策略比賽一次,求田忌獲勝的概率;

2)如果比賽約定,只能同等級(jí)馬對(duì)戰(zhàn),每次比賽賭注1000,即勝利者贏得對(duì)方1000,每月比賽一次,求田忌一年賽馬獲利的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù),.

)若是函數(shù)的一個(gè)極值點(diǎn),求的值;

)求證:當(dāng)時(shí),上是增函數(shù);

)若對(duì)任意的1,2),總存在,使不等式成立,求實(shí)數(shù)的取范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若直線是曲線的一條切線,求實(shí)數(shù)的值;

(2)當(dāng)時(shí),若函數(shù)上有兩個(gè)零點(diǎn).求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,圓,點(diǎn),是圓上的動(dòng)點(diǎn),線段的垂直平分線交直線于點(diǎn),點(diǎn)的軌跡為曲線.

1)討論曲線的形狀,并求其方程;

2)若,且面積的最大值為,直線過點(diǎn)且不垂直于坐標(biāo)軸,與曲線交于,點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案