【題目】已知拋物線y22pxp0)的焦點為F,點A2y0)為拋物線上一點,且|AF|4

1)求拋物線的方程;

2)直線lyx+m與拋物線交于不同兩點PQ,若,其中O為坐標原點,求m的值.

【答案】1y28x 2)﹣11.

【解析】

1)由拋物線的定義到焦點的距離,轉(zhuǎn)化為到準線的距離求出的值,即可求出拋物線方程;

2)直線與拋物線聯(lián)立,由根與系數(shù)的關(guān)系,由向量數(shù)量積即可求出的值.

(1)已知拋物線y22pxp0)過點A2y0),

|AF|4,

p4

故拋物線的方程為y28x;

2)設(shè)Px1,y1),Qx2,y2),

聯(lián)立 ,得x2+2m8x+m20,

=(2m824m20,得m2

x1+x282m,

,

m=﹣11m3,

m2,∴m=﹣11

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列前5項和為50, ,數(shù)列的前項和為, , .

(Ⅰ)求數(shù)列, 的通項公式;

(Ⅱ)若數(shù)列滿足, ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F為橢圓C的左焦點,過F作兩條互相垂直的直線,,直線C交于AB兩點,直線C交于D,E兩點,則四邊形ADBE的面積最小值為(

A.4B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列滿足對任意的恒成立,為其前項的和,且

(1)求數(shù)列的通項

(2)數(shù)列滿足,其中

①證明:數(shù)列為等比數(shù)列;

②求集合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.為曲線上的動點,點在射線上,且滿足.

(Ⅰ)求點的軌跡的直角坐標方程;

(Ⅱ)設(shè)軸交于點,過點且傾斜角為的直線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】研究機構(gòu)對某校學生往返校時間的統(tǒng)計資料表明:該校學生居住地到學校的距離(單位:千米)和學生花費在上學路上的時間(單位:分鐘)有如下的統(tǒng)計資料:

到學校的距離(千米)

1.8

2.6

3.1

4.3

5.5

6.1

花費的時間(分鐘)

17.8

19.6

27.5

31.3

36.0

43.2

如果統(tǒng)計資料表明有線性相關(guān)關(guān)系,試求:

(1)判斷是否有很強的線性相關(guān)性?

(相關(guān)系數(shù)的絕對值大于0.75時,認為兩個變量有很強的線性相關(guān)性,精確到0.01)

(2)求線性回歸方程(精確到0.01);

(3)將分鐘的時間數(shù)據(jù)稱為美麗數(shù)據(jù),現(xiàn)從這6個時間數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)全部為美麗數(shù)據(jù)的概率.

參考數(shù)據(jù):,,,

,

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)判斷的單調(diào)性;

(2)求函數(shù)的零點的個數(shù);

(3),若函數(shù)0,內(nèi)有極值,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓錐如圖①所示,圖②是它的正(主)視圖.已知圓的直徑為, 是圓周上異于的一點, 的中點.

(I)求該圓錐的側(cè)面積S;

(II)求證:平面⊥平面

(III)若∠CAB=60°,在三棱錐中,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)分別在、處取得極小值、極大值.平面上點、的坐標分別為,該平面上動點滿足,點是點關(guān)于直線的對稱點.

(Ⅰ)求點的坐標;

(Ⅱ)求動點的軌跡方程.

查看答案和解析>>

同步練習冊答案