13.圓(x+m)2+(y-2m)2=4m+4的面積為16π,則圓心坐標(biāo)為(-3,6).

分析 由已知先求出圓的半徑r=$\sqrt{4m+4}$,再由圓的面積求出m,由此能求出結(jié)果.

解答 解:∵圓(x+m)2+(y-2m)2=4m+4的面積為16π,
∴$π(\sqrt{4m+4})^{2}=16π$,
解得m=3,
∴圓的方程為(x+3)2+(y-6)2=16,
∴圓心坐標(biāo)為(-3,6).
故答案為:(-3,6).

點評 本題考查圓的圓心坐標(biāo)的求法,是基礎(chǔ)題,解題時要認真審題,注意圓的簡單性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.冪函數(shù)y=f(x)的圖象經(jīng)過點(9,3),則此冪函數(shù)的解析式為f(x)=$\sqrt{x}$,x≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定義在[1,+∞)上的函數(shù)f(x)滿足:(1)f(2x)=2f(x);(2)當(dāng)2≤x≤4時,f(x)=1-|x-3|.則集合A={x|f(x)=f(61)}中的最小元素是( 。
A.13B.11C.9D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知在三棱錐A-BCD中,AB=CD,且點M,N分別是BC,AD的中點.
(1)若直線AB與CD所成的角為60°,則直線AB和MN所成的角為60°.
(2)若直線AB⊥CD,則直線AB與MN所成的角為45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=-$\frac{1}{2}$ax2+(1+a)x-lnx(a∈R).
(Ⅰ)當(dāng)a>0時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)a=0時,設(shè)函數(shù)g(x)=xf(x).若存在區(qū)間[m,n]⊆[$\frac{1}{2}$,+∞),使得函數(shù)g(x)在[m,n]上的值域為[k(m+2)-2,k(n+2)-2],求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.m取何值時,方程x2-(m+1)x+1=0有實數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列函數(shù)的反函數(shù):
①y=$\frac{3}{x+1}$ x∈R x≠-1,
②y=$\frac{1}{x-2}$ x∈R x≠2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知兩個單位向量$\overrightarrow{a}$,$\overrightarrow$滿足|λ$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-λ$\overrightarrow$|(λ>0),求當(dāng)$\overrightarrow{a}$•$\overrightarrow$最小時$\overrightarrow{a}$與$\overrightarrow$的夾角.(參考:1+λ2≥2λ,當(dāng)且僅當(dāng)λ=1時等號成立.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2,3},B={x|x=a+b,a∈A,b∈A},則B中所含元素的個數(shù)為( 。
A.9B.7C.5D.3

查看答案和解析>>

同步練習(xí)冊答案