【題目】某工藝品廠要設(shè)計一個如圖1所示的工藝品,現(xiàn)有某種型號的長方形材料如圖2所示,其周長為4m,這種材料沿其對角線折疊后就出現(xiàn)圖1的情況.如圖,ABCD(AB>AD)為長方形的材料,沿AC折疊后AB'DC于點P,設(shè)ADP的面積為S2 , 折疊后重合部分ACP的面積為S1 .

Ⅰ)設(shè)AB=xm,用x表示圖中DP的長度,并寫出x的取值范圍;

Ⅱ)求面積S2最大時,應(yīng)怎樣設(shè)計材料的長和寬?

Ⅲ)求面積(S1+2S2)最大時,應(yīng)怎樣設(shè)計材料的長和寬?

【答案】(1)(2)當(dāng)材料長為 ,寬為 時,S2最大.(3)當(dāng)材料長為 ,寬為 時,S1+2S2最大

【解析】

試題分析:(1)設(shè)米,通過三角形全等以及勾股定,即可用表示圖中的長度,并寫出的取值范圍;

(2)表示面積,利用基本不等式求解最大值,即可求得材料的長和寬的值;

(3)表示面積的表達(dá)式,利用導(dǎo)數(shù)求解函數(shù)的最值即可

試題分析:

解:(Ⅰ)由題意,AB=x,BC=2﹣x,x>2﹣x,1<x<2

設(shè)DP=y,則PC=x﹣y,由ADP≌△CB'P,故PA=PC=x﹣y,

PA2=AD2+DP2,得(x﹣y)2=(2﹣x)2+y2

即: .

Ⅱ)記ADP的面積為S2,則

當(dāng)且僅當(dāng) 時,S2取得最大值.

故當(dāng)材料長為 ,寬為 時,S2最大.

于是令 ,

∴關(guān)于x的函數(shù) 上遞增,在 上遞減,

∴當(dāng) 時,S1+2S2取得最大值.

故當(dāng)材料長為 ,寬為 時,S1+2S2最大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的離心率為 ,F(xiàn)是橢圓C的右焦點.過點F且斜率為k(k≠0)的直線l與橢圓C交于A,B兩點,O是坐標(biāo)原點.
(1)求n的值;
(2)若線段AB的垂直平分線在y軸的截距為 ,求k的值;
(3)是否存在點P(t,0),使得PF為∠APB的平分線?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,是線段的中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,某市為促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾分類投放情況,先隨機(jī)抽取了該市三類垃圾箱總計1000噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸);

“廚余垃圾”箱

“可回收物”箱

“其他垃圾”箱

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60


(1)試估計廚余垃圾投放正確的概率;
(2)試估計生活垃圾投放錯誤的概率;
(3)假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當(dāng)數(shù)據(jù)a,b,c的方差s2最大時,寫出a,b,c的值(結(jié)論不要求證明),并求此時s2的值.
(求:S2= [ + +…+ ],其中 為數(shù)據(jù)x1 , x2 , …,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF= , 則下列結(jié)論中錯誤的個數(shù)是( )

(1) AC⊥BE.
(2) 若P為AA1上的一點,則P到平面BEF的距離為.
(3) 三棱錐A-BEF的體積為定值.
(4) 在空間與DD1,AC,B1C1都相交的直線有無數(shù)條.
(5) 過CC1的中點與直線AC1所成角為40并且與平面BEF所成角為50的直線有2條.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的方程為 (θ為參數(shù)).以坐標(biāo)原點O為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程.

(Ⅰ)當(dāng)時,判斷直線的關(guān)系;

(Ⅱ)當(dāng)上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分別為AC、DC的中點.

(1)求證:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙曲線x2 =1(b>0)的左、右焦點分別為F1 , F2 , 直線l過F2且與雙曲線交于A,B兩點.
(1)直線l的傾斜角為 ,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè)b= ,若l的斜率存在,且( + =0,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓過點,離心率為,左右焦點分別為,過點的直線交橢圓于兩點。

(1)求橢圓的方程;

(2)當(dāng)的面積為時,求直線的方程。

查看答案和解析>>

同步練習(xí)冊答案