設(shè)橢圓的離心率,是其左右焦點(diǎn),點(diǎn)是直線(其中)上一點(diǎn),且直線的傾斜角為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若 是橢圓上兩點(diǎn),滿足,求為坐標(biāo)原點(diǎn))面積的最小值.
(Ⅰ)  ;(Ⅱ).

試題分析:(Ⅰ) 根據(jù) 及;(Ⅱ)分斜率存在和不存在進(jìn)行討論,當(dāng)斜率不存在,易求得,當(dāng)斜率存在時(shí),利用弦長(zhǎng)公式表示出再表示出面積,得,從而的最小值為
試題解析:(Ⅰ)
,故                     
(Ⅱ)當(dāng)直線的斜率不存在時(shí),可設(shè)代入橢圓得
,此時(shí),  , 當(dāng)直線的斜率存在時(shí),設(shè)代入橢圓得:
,   設(shè)
       
得:
 
當(dāng)時(shí),取等號(hào),又,故的最小值為 .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左,右焦點(diǎn),為橢圓上的動(dòng)點(diǎn),且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過(guò)點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn)。試判斷的大小是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知分別是橢圓的左、右頂點(diǎn),點(diǎn)在橢圓上,且直線與直線的斜率之積為
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,已知是橢圓上不同于頂點(diǎn)的兩點(diǎn),直線交于點(diǎn),直線交于點(diǎn).① 求證:;② 若弦過(guò)橢圓的右焦點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩個(gè)焦點(diǎn)分別為,且,點(diǎn)在橢圓上,且的周長(zhǎng)為6.
(I)求橢圓的方程;
(II)若點(diǎn)的坐標(biāo)為,不過(guò)原點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,點(diǎn)到直線的距離為,且三點(diǎn)共線.求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知、是橢圓的左、右焦點(diǎn),且離心率,點(diǎn)為橢圓上的一個(gè)動(dòng)點(diǎn),的內(nèi)切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個(gè)點(diǎn),滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線方程的離心率為,其實(shí)軸與虛軸的四個(gè)頂點(diǎn)和橢圓的四個(gè)頂點(diǎn)重合,橢圓G的離心率為,一定有(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓動(dòng)圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長(zhǎng)時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,且過(guò)雙曲線的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、是雙曲線上關(guān)于它的中心對(duì)稱(chēng)的任意兩點(diǎn), 為該雙曲線上的動(dòng)點(diǎn),若直線均存在斜率,則它們的斜率之積為定值”.試類(lèi)比上述命題,寫(xiě)出一個(gè)關(guān)于橢圓的類(lèi)似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫(xiě)出關(guān)于方程不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案