已知雙曲線x2-=1,雙曲線存在關于直線l:y=kx+4的對稱點,求實數(shù)k的取值范圍.
k的取值范圍是(,+∞)∪(-∞,-)∪(-,0)∪(0, ).
當k=0時,顯然不成立.
∴當k≠0時,由l⊥AB,可設直線AB的方程為y=-x+b,代入3x2-y2=3中,得(3k2-1)x2+2kbx-(b2+3)k2=0.
顯然3k2-1≠0,∴Δ=(2kb)2-4(3k2-1)[-(b2+3)k2]>0,即k2b2+3k2-1>0. ①
由根與系數(shù)的關系,得中點M(x0,y0)的坐標
∵M(x0,y0)在直線l上,
∴=+4,即k2b=3k2-1. ②
把②代入①得k2b2+k2b>0,解得b>0,或b<-1.
∴>0或<-1,
即|k|>或|k|<,且k≠0.
∴k的取值范圍是(,+∞)∪(-∞,-)∪(-,0)∪(0, ).
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com