精英家教網 > 高中數學 > 題目詳情
13.設x、y滿足約束條件:$\left\{\begin{array}{l}x+y≥0\\ x-y≥-1\\ x+y≤3\end{array}\right.$,則z=x-2y的最小值為-3.

分析 先根據條件畫出可行域,設z=x+2y,再利用幾何意義求最值,將最小值轉化為y軸上的截距最大,只需求出直線z=x+2y,取得截距的最小值,從而得到z最小值即可

解答 解:由約束條件得到如圖可行域,由目標函數z=x-2y得到y(tǒng)=$\frac{1}{2}$x-$\frac{z}{2}$,
當直線經過B時,直線在y軸的截距最大,使得z最小,
由$\left\{\begin{array}{l}{x-y=-1}\\{x+y=3}\end{array}\right.$得到B(1,2),
所以z的最小值為1-2×2=-3;
故答案為:-3.

點評 本題考查了簡單線性規(guī)劃問題;借助于平面區(qū)域特性,用幾何方法處理代數問題,體現了數形結合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

7.已知函數y=ln$\frac{a-x}{x+1}$的定義域為P,不等式|x-1|≤1的解集為Q.
(1)若a=5,求P;
(2)若Q⊆P,求正數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知函數f(x)=$\frac{cos(πx-π)}{{2}^{x}+{2}^{2-x}}$(x∈R),給出下面四個命題:
①函數f(x)的圖象一定關于某條直線對稱;
②函數f(x)在R上是周期函數;
③函數f(x)的最大值為$\frac{1}{4}$;
④對任意兩個不相等的實數${x_1},{x_2}∈(0,\;\;\frac{3}{2})$,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{1}{10}$成立.
其中所有真命題的序號是①③.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足b=2,cosC=$\frac{1}{4}$,△ABC的面積為$\frac{{3\sqrt{15}}}{4}$.
(1)求a的值;
(2)求sin2B的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.如圖,在正三棱柱ABC-A1B1C1中,側棱與底面垂直,∠BAC=90°,AB=AC=AA1,點M,N分別為A1B和B1C1的中點.
(1)求證:平面A1BC⊥平面MAC;
(2)求證:MN∥平面A1ACC1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(m,2),$\overrightarrow$=(-1,n)(n>0),且$\overrightarrow{a}$•$\overrightarrow$=0,點P(m,n)在圓x2+y2=5上,則|2$\overrightarrow{a}$+$\overrightarrow$|=(  )
A.$\sqrt{34}$B.6C.$4\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,若輸出的S=63,則輸入a的值可以是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.在空間直角坐標系O-xyz中,A(1,2,3),B(4,5,6),則|AB|=3$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=$\sqrt{3}$.已知PB=PC.
(1)若N為PA的中點,求證:DN∥平面PBC;
(2)若M為BC的中點,求證:MN⊥BC.

查看答案和解析>>

同步練習冊答案