【題目】手機作為客戶端越來越為人們所青睞,通過手機實現(xiàn)衣食住行消費已經成為一種主要的消費方式.在某市,隨機調查了200名顧客購物時使用手機支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機支付的人群中隨機抽取1人,抽到青年的概率為.
(I)根據已知條件完成2×2列聯(lián)表,并根據此資料判斷是否有99.5%的把握認為“市場購物用手機支付與年齡有關”?
2×2列聯(lián)表:
青年 | 中老年 | 合計 | |
使用手機支付 | 120 | ||
不使用手機支付 | 48 | ||
合計 | 200 |
(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機支付”和“不使用手機支付”抽取一個容量為10的樣本,再從中隨機抽取3人,求這三人中“使用手機支付”的人數的分布列及期望.
附:
0.05 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
【答案】(I)有99.5%的把握認為“市場購物用手機支付與年齡有關”
(Ⅱ)所求隨機變量的概率分布為
0 | 1 | 2 | 3 | |
期望
【解析】
(Ⅰ)根據抽樣比例求得對應數據,填寫2×2列聯(lián)表,根據表中數據計算K2,對照臨界值得出結論;
(Ⅱ)根據分層抽樣方法計算對應人數,得出隨機變量X的可能取值,計算對應的概率值,寫出X的分布列,計算數學期望值.
(Ⅰ)從使用手機支付的人群中隨意抽取1人,抽到青年的概率為,
∴使用手機支付的人群中青年的人數為120=84,
則使用手機支付的人群中的中老年的人數為120﹣84=36,
由此填寫2×2列聯(lián)表如下;
青年 | 中老年 | 合計 | |
使用手機支付 | 84 | 36 | 120 |
不使用手機支付 | 32 | 48 | 80 |
合計 | 116 | 84 | 200 |
根據表中數據,計算K217.734>7.879,
∴P(K2≥7.879)=0.005,
由此判斷有99.5%的把握認為“市場購物用手機支付與年齡有關”;
(Ⅱ)根據分層抽樣方法,從這200名顧客中抽取10人,
抽到“使用手機支付”的人數為106,
“不使用手機支付”的人數為4,
設隨機抽取的3人中“使用手機支付”的人數為隨機變量X,
則X的可能取值分別為0,1,2,3;
計算P(X=0),
P(X=1),
P(X=2),
P(X=3),
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
|
|
|
|
X的數學期望為EX=0123.
科目:高中數學 來源: 題型:
【題目】一布袋中裝有個小球,甲,乙兩個同學輪流且不放回的抓球,每次最少抓一個球,最多抓三個球,規(guī)定:由乙先抓,且誰抓到最后一個球誰贏,那么以下推斷中正確的是( )
A. 若,則乙有必贏的策略B. 若,則甲有必贏的策略
C. 若,則甲有必贏的策略D. 若,則乙有必贏的策略
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:(a>0,b>0)的漸近線方程為y=±x,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)已知直線y=x+m與雙曲線C交于不同的兩點A,B,且線段AB的中點為,當x0≠0時,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數學的對稱美在中國傳統(tǒng)文化中多有體現(xiàn),譬如如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉化、對稱統(tǒng)一的和諧美.如果能夠將圓的周長和面積同時平分的函數稱為這個圓的“優(yōu)美函數”,下列說法正確的是( )
A.對于任意一個圓,其“優(yōu)美函數”有無數個
B.可以是某個圓的“優(yōu)美函數”
C.正弦函數可以同時是無數個圓的“優(yōu)美函數”
D.函數是“優(yōu)美函數”的充要條件為函數的圖象是中心對稱圖形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠生產某種型號的農機具零配件,為了預測今年7月份該型號農機具零配件的市場需求量,以合理安排生產,工廠對本年度1月份至6月份該型號農機具零配件的銷售量及銷售單價進行了調查,銷售單價(單位:元)和銷售量(單位:千件)之間的6組數據如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售單價(元) | 11.1 | 9.1 | 9.4 | 10.2 | 8.8 | 11.4 |
銷售量(千件) | 2.5 | 3.1 | 3 | 2.8 | 3.2 | 2.4 |
(1)根據1至6月份的數據,求關于的線性回歸方程(系數精確到0.01);
(2)結合(1)中的線性回歸方程,假設該型號農機具零配件的生產成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達到最大?(計算結果精確到0.1)
參考公式:回歸直線方程,
參考數據:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB⊥BC,E、F分別為A1C1和BC的中點.
(1)求證:平面ABE⊥平面B1BCC1;
(2)求證:C1F//平面ABE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代的數學名著,書中對幾何學的研究比西方早一千多年.在該書中,將底面為直角三角形,且側棱垂直于底面的三棱柱稱為塹堵;將底面為矩形,一側棱垂直于底面的四棱錐稱為陽馬;將四個面均為直角三角形的四面體稱為鱉臑.如圖,在塹堵中,,,鱉臑的體積為2,則陽馬外接球表面積的最小值為__________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com