17.已知${C}_{n}^{5}$=${C}_{n}^{6}$,求${C}_{n+3}^{2}$的值.

分析 根據(jù)組合數(shù)的性質(zhì),求出n的值,再代入計(jì)算${C}_{n+3}^{2}$的值.

解答 解:∵${C}_{n}^{5}$=${C}_{n}^{6}$,
∴n=5+6=11;
∴${C}_{n+3}^{2}$=${C}_{14}^{2}$=$\frac{14×13}{2×1}$=91.

點(diǎn)評(píng) 本題考查了組合數(shù)的性質(zhì)與應(yīng)用問(wèn)題,也考查了組合數(shù)的計(jì)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\overrightarrow{a}$=(-2,1,3),$\overrightarrow$=(-1,2,1),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow$),則實(shí)數(shù)λ的值為( 。
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)y=a-bcos(2x+$\frac{π}{6}$)的最大值為3,最小值為-1.
(1)求a,b的值;
(2)設(shè)函數(shù)g(x)=4asin(bx-$\frac{π}{3}$),求方程g(x)-2=0在區(qū)間[$\frac{π}{6}$,$\frac{5}{6}$π]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知A(1,2),B(3,3),C(7,-1),$\overrightarrow{BM}$=$\frac{1}{4}$$\overrightarrow{BC}$.
(1)求點(diǎn)M的坐標(biāo);
(2)證明:$\overrightarrow{OM}$∥$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ax+a-x(a>0且a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)設(shè)g(x)=$\frac{1}{f(x)}$,當(dāng)x∈(0,1)時(shí),求函數(shù)g(x)的值域;
(3)若f(1)=$\frac{5}{2}$,設(shè)h(x)=a2x+a-2x-2mf(x)的最小值為-7,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.圓周上有6個(gè)點(diǎn),任取3個(gè)點(diǎn)可以做一個(gè)三角形,可得到三角形的個(gè)數(shù)( 。
A.6B.12C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.解方程:${C}_{25}^{2x}$=${C}_{25}^{x+4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在菱形ABCD中,AB=1,∠BAD=60°,且E為對(duì)角線AC上一點(diǎn).
(1)求$\overrightarrow{AB}$•$\overrightarrow{AD}$;
(2)若$\overrightarrow{AE}$=2$\overrightarrow{EC}$,求$\overrightarrow{AE}$•$\overrightarrow{AB}$;
(3)連結(jié)BE并延長(zhǎng),交CD于點(diǎn)F,連結(jié)AF,設(shè)$\overrightarrow{CE}$=λ$\overrightarrow{EA}$(0≤λ≤1).當(dāng)λ為何值時(shí),可使$\overrightarrow{AF}$•$\overrightarrow{BF}$最小,并求出$\overrightarrow{AF}$$•\overrightarrow{BF}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=xsinθ+cosθ,其中θ∈[0,2π).
(Ⅰ)若f(x)在(-∞,+∞)為減函數(shù),求θ的取值范圍;
(Ⅱ)若函數(shù)f(x)為奇函數(shù),求lnf(sinθ)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案