2.已知點(diǎn)(m,n)在雙曲線8x2-3y2=24上,則2m+4的范圍是m≤4-2$\sqrt{3}$,或m≥4+2$\sqrt{3}$.

分析 將(m,n)代入雙曲線的標(biāo)準(zhǔn)方程,確定m的范圍,從而確定2m+4的取值范圍

解答 解:∵點(diǎn)(m,n)在雙曲線8x2-3y2=24上,
∴8m2-3n2=24
∴3n2=8m2-24≥0
∴m2≥3
∴m≤-$\sqrt{3}$或m≥$\sqrt{3}$,
∴2m+4的取值范圍是m≤4-2$\sqrt{3}$,或m≥4+2$\sqrt{3}$.
故答案為:m≤4-2$\sqrt{3}$,或m≥4+2$\sqrt{3}$.

點(diǎn)評 本題以雙曲線方程為載體,考查代數(shù)式的取值范圍,解題的關(guān)鍵是確定m的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=|x-3|-|x+2|.
(1)若不等式f(x)≥|m-1|有解,求實(shí)數(shù)m的最小值M;
(2)在(1)的條件下,若正數(shù)a,b滿足3a+b=-M,證明:$\frac{3}$+$\frac{1}{a}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<$\frac{π}{2}$的圖象與x軸相交,相鄰兩距離為$\frac{π}{2}$,且圖象上,一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-2).
(1)求f(x)的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求出函數(shù)的對稱中心和對稱軸方程;
(4)求f(x)的最值及此時(shí)x的集合;
(5)當(dāng)x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的值域;
(6)若f(α)=1,求角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.知函數(shù)f(x)=|lnx|,設(shè)x1≠x2且f(x1)=f(x2).
(1)證明:(x1-1)(x2-1)<0,且x1x2=1.
(2)若x1+x2+f(x1)+f(x2)>M對任意滿足條件的x1,x2恒成立,求實(shí)數(shù)M的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)函數(shù)f(x)=-x3+2ex2-mx+lnx,若方程f(x)=x有解,則實(shí)數(shù)m的最大值是e2+$\frac{1}{e}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x-1|-|x+2|.
(1)求不等式f(x)>0的解集;
(2)若存在x0∈R,使得f(x0)+2a2<4a,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.是否存在實(shí)數(shù)a,使得函數(shù)=-$\frac{1}{2}$cos2x+acosx+$\frac{5}{8}$a-1在閉區(qū)間[0,$\frac{π}{2}$]上的最大值是1?若存在,求出對應(yīng)的a值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{3}}{3}$=1的左焦點(diǎn)F作直線交橢圓于A,B兩點(diǎn),且$\overrightarrow{BF}$=2$\overrightarrow{FA}$,則三角形0AB的面積是(0為坐標(biāo)原點(diǎn))$\frac{9\sqrt{5}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)為奇函數(shù),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,方程f(x)=a(0<a<1)的所有實(shí)數(shù)根之和為( 。
A.1-2aB.2a-1C.($\frac{1}{2}$)a-1D.1-($\frac{1}{2}$)a

查看答案和解析>>

同步練習(xí)冊答案