分析 (1)根據(jù)對數(shù)的運算性質(zhì),可得lnx1=-lnx2,進而得到x1x2=1,分類討論(x1-1)(x2-1)的符號,可得結(jié)論;
(2)不妨令x2>1,則x1+x2+f(x1)+f(x2)=$\frac{1}{{x}_{2}}$+x2+2lnx2>M恒成立,令g(x)=$\frac{1}{x}+x+2lnx$,x>1,可得答案.
解答 證明:(1)∵函數(shù)f(x)=|lnx|,x1≠x2且f(x1)=f(x2).
∴l(xiāng)nx1=-lnx2,即lnx1+lnx2=ln(x1•x2)=0,
即x1x2=1,
若x2>1,則x1<1,則(x1-1)(x2-1)<0,
若x2<1,則x1>1,則(x1-1)(x2-1)<0,
綜上可得(x1-1)(x2-1)<0;
解:(2)不妨令x2>1,
則x1+x2+f(x1)+f(x2)=$\frac{1}{{x}_{2}}$+x2+2lnx2>M恒成立,
令g(x)=$\frac{1}{x}+x+2lnx$,x>1,
則g′(x)=-$\frac{1}{{x}^{2}}$+1+$\frac{2}{x}$=$\frac{{x}^{2}+2x-1}{{x}^{2}}$>0恒成立,
則g(x)在(1,+∞)上恒成立,
由g(1)=2,可得M≤2,
即M的最大值為2.
點評 本題考查的知識點是函數(shù)恒成立問題,對數(shù)函數(shù)的圖象和性質(zhì),熟練掌握對數(shù)函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{85}$ | B. | $\frac{7}{72}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com