【題目】記方程①x2+a1x+1=0,②x2+a2x+1=0③x2+a3x+1=0,其中a1a2a3是正實數(shù),當a1,a2,a3成等比數(shù)列,下列選項中,當方程有實根時,能推出的是( )

A.方程有實根或方程無實根B.方程有實根或方程有實根

C.方程無實根或方程無實根D.方程無實根或方程有實根

【答案】C

【解析】

試題當方程有實根時,≥0,又a30,解得a3≥2.由于a1a2,a3成等比數(shù)列,可得.對于方程①x2+a1x+1=0,1=;對于方程②x2+a2x+1=0,2=﹣4.對2分類討論即可得出.

解:當方程有實根時,≥0,又a30,解得a3≥2

∵a1,a2,a3成等比數(shù)列,

對于方程①x2+a1x+1=0,1=;對于方程②x2+a2x+1=0,2=﹣4

假設(shè)20,則0a22,則a1=2,可得10,因此方程無實數(shù)根;

假設(shè)2≥0,則a2≥2,則a1=2的大小不確定,因此10大小關(guān)系不確定,即方程可能有實數(shù)根也可能無實數(shù)根.

故選C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線的極坐標方程為,曲線的極坐標方程為,以極點為坐標原點,極軸為的正半軸建立平面直角坐標系.

(1)求的參數(shù)方程;

(2)已知射線,將逆時針旋轉(zhuǎn)得到,且交于兩點, 交于兩點,求取得最大值時點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè),.已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)已知函數(shù)的圖象在公共點(x0,y0)處有相同的切線,

(i)求證:處的導數(shù)等于0;

(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為為參數(shù)),直線與曲線分別交于,兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的極坐標為,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性并求當時函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的方程范圍內(nèi)有實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,且.

1)求數(shù)列的通項公式;

2)若,數(shù)列的前項和為,求的取值范圍;

3)若,從數(shù)列中抽出部分項(奇數(shù)項與偶數(shù)項均不少于兩項),將抽出的項按照某一順序排列后構(gòu)成等差數(shù)列.當?shù)炔顢?shù)列的項數(shù)最大時,求所有滿足條件的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為.

1)求C的普通方程和l的傾斜角;

2)設(shè)點,lC交于A,B兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年中秋節(jié)到來之際,某超市為了解中秋節(jié)期間月餅的銷售量,對其所在銷售范圍內(nèi)的1000名消費者在中秋節(jié)期間的月餅購買量單位:進行了問卷調(diào)查,得到如下頻率分布直方圖:

求頻率分布直方圖中a的值;

以頻率作為概率,試求消費者月餅購買量在的概率;

已知該超市所在銷售范圍內(nèi)有20萬人,并且該超市每年的銷售份額約占該市場總量的,請根據(jù)這1000名消費者的人均月餅購買量估計該超市應準備多少噸月餅恰好能滿足市場需求頻率分布直方圖中同一組的數(shù)據(jù)用該組區(qū)間的中點值作代表?

查看答案和解析>>

同步練習冊答案