分析 利用復數(shù)代數(shù)形式的乘除運算化簡,則復數(shù)$\frac{-2i}{(1+{i)}^{3}}$的虛部可求.
解答 解:∵$\frac{-2i}{(1+{i)}^{3}}$=$\frac{-2i}{{1}^{3}+3i+3{i}^{2}+{i}^{3}}=\frac{-2i}{-2+2i}$
=$\frac{i}{1-i}=\frac{i(1+i)}{(1-i)(1+i)}$=$\frac{-1+i}{2}=-\frac{1}{2}+\frac{i}{2}$.
∴復數(shù)$\frac{-2i}{(1+{i)}^{3}}$的虛部為$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.
點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | 4 | C. | 1 | D. | 4或1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{11}{24}$ | B. | $\frac{13}{24}$ | C. | -$\frac{13}{24}$ | D. | -$\frac{11}{24}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若命題p:?n∈N,2n>1000,則¬p:?n∈N,2n≤1000 | |
B. | 命題“若x2-3x+2=0,則x=1”,逆否命題為“若x≠1,則x2-3x+2≠0”; | |
C. | “a=2”是“函數(shù)f(x)=logax在區(qū)間(0,+∞)上為增函數(shù)”的充分不必要條件; | |
D. | 命題“?x∈(-∞,0),2x<3x”是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com