設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(0,4),離心率為
3
5

(Ⅰ)求C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為
4
5
的直線被C所截線段的中點(diǎn)坐標(biāo).
分析:(Ⅰ)根據(jù)題意,將(0,4)代入C的方程得b的值,進(jìn)而由橢圓的離心率為
3
5
,結(jié)合橢圓的性質(zhì),可得
c2
a2
=
a2-b2
a2
=
9
25
;解可得a的值,將a、b的值代入方程,可得橢圓的方程.
(Ⅱ)根據(jù)題意,可得直線的方程,設(shè)直線與C的交點(diǎn)為A(x1,y1),B(x2,y2),聯(lián)立直線與橢圓的方程,化簡可得方程x2-3x-8=0,解可得x1與x2的值,由中點(diǎn)坐標(biāo)公式可得中點(diǎn)的橫坐標(biāo),將其代入直線方程,可得中點(diǎn)的縱坐標(biāo),即可得答案.
解答:解:(Ⅰ)根據(jù)題意,橢圓過點(diǎn)(0,4),
將(0,4)代入C的方程得
16
b2
=1
,即b=4
e=
c
a
=
3
5
c2
a2
=
a2-b2
a2
=
9
25
;
1-
16
a2
=
9
25
,∴a=5
∴C的方程為
x2
25
+
y2
16
=1


(Ⅱ)過點(diǎn)(3,0)且斜率為
4
5
的直線方程為y=
4
5
(x-3)
,
設(shè)直線與C的交點(diǎn)為A(x1,y1),B(x2,y2),
將直線方程y=
4
5
(x-3)
代入C的方程,得
x2
25
+
(x-3)2
25
=1
,
即x2-3x-8=0,解得x1=
3-
41
2
,x2=
3+
41
2
,
∴AB的中點(diǎn)坐標(biāo)
.
x
=
x1+x2
2
=
3
2

.
y
=
y1+y2
2
=
2
5
(x1+x2-6)=-
6
5
,
即中點(diǎn)為(
3
2
,-
6
5
)
點(diǎn)評(píng):本題考查橢圓的性質(zhì)以及橢圓與直線相交的有關(guān)性質(zhì),涉及直線與橢圓問題,一般要聯(lián)立兩者的方程,轉(zhuǎn)化為一元二次方程,由韋達(dá)定理分析解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦點(diǎn)為F,它與直線l:y=k(x+1)相交于P、Q兩點(diǎn),l與x軸的交點(diǎn)M到橢圓左準(zhǔn)線的距離為d,若橢圓的焦距是b與d+|MF|的等差中項(xiàng).
(1)求橢圓離心率e;
(2)設(shè)N與M關(guān)于原點(diǎn)O對(duì)稱,若以N為圓心,b為半徑的圓與l相切,且
OP
OQ
=-
5
3
求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦點(diǎn)分別為F1F2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0

(1)若過A.Q.F2三點(diǎn)的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M.N兩點(diǎn).試證明:
1
|F2M|
+
1
|F2N|
為定值;②在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鹽城一模)設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
恒過定點(diǎn)A(1,2),則橢圓的中心到準(zhǔn)線的距離的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若P 是橢圓上的一點(diǎn),|
PF1
|+|
PF2
|=4
,離心率e=
3
2

(1)求橢圓C的方程;
(2)若P 是第一象限內(nèi)該橢圓上的一點(diǎn),
PF1
PF2
=-
5
4
,求點(diǎn)P的坐標(biāo);
(3)設(shè)過定點(diǎn)P(0,2)的直線與橢圓交于不同的兩點(diǎn)A,B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦點(diǎn)分別為F1,F(xiàn)2,離心率為e=
2
2
,以F1為圓心,|F1F2|為半徑的圓與直線x-
3
y-3=0
相切.
(I)求橢圓C的方程;
(II)直線y=x交橢圓C于A、B兩點(diǎn),D為橢圓上異于A、B的點(diǎn),求△ABD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案