【題目】垃圾分類是改善環(huán)境,節(jié)約資源的新舉措.住建部于6月28日擬定了包括我市在內(nèi)的46個(gè)重點(diǎn)試點(diǎn)城市,要求這些城市在2020年底基本建成垃圾分類處理系統(tǒng).為此,我市某中學(xué)對(duì)學(xué)生開(kāi)展了“垃圾分類”有關(guān)知識(shí)的講座并進(jìn)行測(cè)試,將所得測(cè)試成績(jī)整理后,繪制出頻率分布直方圖如圖所示.
(1)求頻率分布直方圖中a的值,并估計(jì)測(cè)試的平均成績(jī);
(2)將頻率視為相應(yīng)的概率,如果從參加測(cè)試的同學(xué)中隨機(jī)選取4名同學(xué),這4名同學(xué)中測(cè)試成績(jī)?cè)?/span>的人數(shù)記為,求的分布列及數(shù)學(xué)期望.
【答案】(1),76.5;(2)分布列見(jiàn)解析,2.
【解析】
(1)利用頻率分布直方圖中所有頻率之和為1(即所有小矩形面積之和為1)可計(jì)算出,每組中間點(diǎn)值乘以該組頻率相加可得估計(jì)的平均成績(jī);
(2)由(1)得成績(jī)?cè)?/span>的頻率為,因此有,的可能取值為:0,1,2,3,4,由二項(xiàng)分布計(jì)算出各概率得分布列,由期望公式可計(jì)算出期望值.
(1)由題意得:
所以:,
平均成績(jī)?yōu)椋?/span>.
(2)易知測(cè)試成績(jī)?cè)?/span>的頻率為
故.
的可能取值為:0,1,2,3,4
的分布列為
0 | 1 | 2 | 3 | 4 | |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù),當(dāng)時(shí),
則函數(shù)的所有零點(diǎn)之和為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)
(1)解關(guān)于的不等式;
(2)若不等式對(duì)任意實(shí)數(shù)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】瑞士數(shù)學(xué)家、物理學(xué)家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內(nèi)任意兩點(diǎn)的連線都被完全包含在該多面體中,直觀上講是指沒(méi)有凹陷或孔洞的多面體)的頂點(diǎn)數(shù)V、棱數(shù)E及面數(shù)F滿足等式V﹣E+F=2,這個(gè)等式稱為歐拉多面體公式,被認(rèn)為是數(shù)學(xué)領(lǐng)域最漂亮、簡(jiǎn)潔的公式之一,現(xiàn)實(shí)生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由12塊黑色正五邊形面料和20塊白色正六邊形面料構(gòu)成的.20世紀(jì)80年代,化學(xué)家們成功地以碳原子為頂點(diǎn)組成了該種結(jié)構(gòu),排列出全世界最小的一顆“足球”,稱為“巴克球(Buckyball)”.則“巴克球”的頂點(diǎn)個(gè)數(shù)為( )
A.180B.120C.60D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若.
(ⅰ)求曲線在點(diǎn)處的切線方程;
(ⅱ)求函數(shù)在區(qū)間內(nèi)的極大值的個(gè)數(shù).
(2)若在內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,分別為內(nèi)角,,的對(duì)邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.
(1)滿足有解三角形的序號(hào)組合有哪些?
(2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.
(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且與交于,兩點(diǎn),已知點(diǎn)的極坐標(biāo)為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程,并求的值;
(2)若矩形內(nèi)接于曲線且四邊與坐標(biāo)軸平行,求其周長(zhǎng)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中, 分別是線段的中點(diǎn).
(1)求異面直線與所成角的大小;
(2)求直線與平面所成角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com