16.已知圓${C_1}:{(x+3)^2}+{(y-4)^2}=4$和兩點(diǎn)A(0,8-m),B(0,8+m)(m>0),若圓C1上存在點(diǎn)P,使得∠APB=90°,則m的最大值為(  )
A.3B.7C.8D.9

分析 根據(jù)條件轉(zhuǎn)化為以AB為直徑的圓C和C1有交點(diǎn),利用圓與圓的位置關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

解答 解:若若圓C上存在點(diǎn)P,使得∠APB=90°,
等價(jià)為以AB為直徑的圓C和C1有交點(diǎn),
|AB|=2m,即半徑r=m,AB的中點(diǎn)為C(0,8),
圓C1的圓心(-3,4),半徑R=2,
則|CC1|=$\sqrt{(-3)^{2}+(8-4)^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
若以AB為直徑的圓C和C1有交點(diǎn),
則滿足r-R≤|CC1|≤R+r,
即m-2≤5≤m+2,
即$\left\{\begin{array}{l}{m≤7}\\{m≥3}\end{array}\right.$,則3≤m≤7,
故m的最大值為7,
故選:B.

點(diǎn)評(píng) 本題主要考查圓與圓的位置關(guān)系的應(yīng)用,根據(jù)條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足遞推式an=2an-1+1(n≥2),其中a4=15.
(1)求a1,a2,a3;
(2)求證:數(shù)列{an+1}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分別滿足下列條件的a,b的值.
(1)直線l1過點(diǎn)(-3,-1),且l1⊥l2;
(2)l1∥l2,且坐標(biāo)原點(diǎn)到l1與l2的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}2-{(\frac{1}{2})^x},x≤0\\ \frac{1}{2}{x^2}-x+1,x>0\end{array}\right.$.
(1)寫出該函數(shù)的單調(diào)遞減區(qū)間;
(2)若函數(shù)g(x)=f(x)-m恰有1個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)若不等式f(x)≤n2-2bn+1對(duì)所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.學(xué)校文娛隊(duì)的每位隊(duì)員唱歌、跳舞至少會(huì)一項(xiàng),已知會(huì)唱歌的有2人,會(huì)跳舞的有5人,現(xiàn)從中選2人.設(shè)ξ為選出的人中即會(huì)唱歌又會(huì)跳舞的人數(shù),且$P(ξ>0)=\frac{7}{10}$.
(1)求文娛隊(duì)的隊(duì)員人數(shù);   
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某市一共有13個(gè)行政縣,其中有5個(gè)貧困縣,市教育局開學(xué)后準(zhǔn)備從中抽取2個(gè)縣進(jìn)行調(diào)研,則抽到2個(gè)縣都是貧困縣的概率是( 。
A.$\frac{2}{5}$B.$\frac{2}{13}$C.$\frac{5}{13}$D.$\frac{5}{39}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知兩個(gè)單位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為60°,若$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,則$\overrightarrow{a}$在$\overrightarrow{a}$-2$\overrightarrow{{e}_{1}}$方向上的投影為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.n2(n≥4,n∈N*)個(gè)正數(shù)排成一個(gè)n行n列的數(shù)陣,A=$(\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}{a}_{14}…{a}_{1n}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}{a}_{24}…{a}_{2n}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}{a}_{34}…{a}_{3n}}\\{…}&{…}&{…}\\{{a}_{n1}}&{{a}_{n2}}&{{a}_{n3}{a}_{n4}…{a}_{nn}}\end{array})$,其中aij(1≤i≤n,1≤j≤n)表示該數(shù)陣中位于第i行第j列的數(shù),已知該數(shù)陣每一行的數(shù)成等差數(shù)列,每一列的數(shù)成公比為2的等比數(shù)列,且a22=6,a33=16.
(Ⅰ) 求a11和aij
(Ⅱ)設(shè)An=a1n+a2(n-1)+a3(n-2)+…+an1
①求An;
②證明:當(dāng)n是3的倍數(shù)時(shí),An+n能被21整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),橢圓的長軸長為8,離心率為$\frac{\sqrt{7}}{4}$.
(1)求橢圓方程;
(2)橢圓內(nèi)接四邊形ABCD的對(duì)角線交于原點(diǎn),且($\overrightarrow{AB}$$+\overrightarrow{AD}$)•($\overrightarrow{DC}$$-\overrightarrow{BC}$)=0,求四邊形ABCD周長的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案