已知函數(shù)f(x)=
xx2+1
,x∈(-1,1)
(1)判斷此函數(shù)的奇偶性;
(2)判斷函數(shù)的單調(diào)性,并加以證明.
(3)解不等式f(x)-f(1-x)>0.
分析:(1)將函數(shù)解析式中x換為-x,變形得到f(-x)=-f(x),即函數(shù)為奇函數(shù);
(2)任取x1,x2∈(0,+∞),且x1<x2,根據(jù)x的范圍判斷出f(x1)-f(x2)<0,即f(x1)<f(x2),即可得到此函數(shù)為增函數(shù);
(3)利用(2)得到此函數(shù)為增函數(shù),及x的范圍列出關于x的不等式組,求出不等式組的解集即可得到x的范圍.
解答:解:(1)∵f(-x)=
-x
(-x)2+1
=-
x
x2+1
=-f(x),
∴f(x)=
x
x2+1
,x∈(-1,1)為奇函數(shù);
(2)任取x1,x2∈(0,+∞),且x1<x2,
則f(x1)-f(x2)=
(x2-x1)(x1x2-1)
(x12+1)(x22+1)
,
∵x12+1>0,x22+1>0,x2-x1>0,
∴當-1<x1<x2<1時,x1x2-1<0,即f(x1)-f(x2)<0,
則函數(shù)f(x)是增函數(shù);
(3)根據(jù)題意得:
-1<x<1
-1<1-x<1
x>1-x

解得:
1
2
<x<1,
則原不等式的解集為{x|
1
2
<x<1}.
點評:此題考查了其他不等式的解法,奇偶性與增減性的綜合運用,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案