9.已知a>0,求函數(shù)f(x)=x2eax的單調(diào)區(qū)間.

分析 先確定函數(shù)的定義域然后求導(dǎo)數(shù)fˊ(x),在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0即可.

解答 解:∵f'(x)=x(ax+2)eax
當(dāng)a>0時(shí),令 f′(x)=0,得x(ax+2)=0,故x=0或x=-$\frac{2}{a}$,
若x>0,則f'(x)>0,從而f(x)在(0,+∞)上單調(diào)遞增,
若-$\frac{2}{a}$<x<0,則f′(x)<0,從而f(x)在(-$\frac{2}{a}$,0))上單調(diào)遞減,
若 x<-$\frac{2}{a}$,則f′(x)>0,從而f(x)在(-∞,-$\frac{2}{a}$)上單調(diào)遞增,
即f(x)在(-∞,-$\frac{2}{a}$)遞增,在(-$\frac{2}{a}$,0)遞減,在(0,+∞)遞增.

點(diǎn)評(píng) 本小題主要考查函數(shù)的導(dǎo)數(shù),單調(diào)性等基礎(chǔ)知識(shí),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,則f(f(-2))=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若命題p:?x∈Z,ex<1,則?p為( 。
A.?x∈Z,ex<1B.?x∉Z,ex<1C.?x∈Z,ex≥1D.?x∉Z,ex≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知cosα=-$\frac{3}{5}$,求$\frac{cos(α-\frac{7π}{2})+2sin(3π-α)}{csc(3π+α)+sec(\frac{5π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C1:(x-2$\sqrt{3}$)2+(y-1)2=4,直線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+\sqrt{3}t}\\{y=-\sqrt{3}}+t\end{array}\right.$(t≠0),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立坐標(biāo)系,兩坐標(biāo)系取相同單位.
(1)求C1,C2的極坐標(biāo)方程;
(2)設(shè)C2向左平移1個(gè)單位后與C1的交點(diǎn)為M,N,求MN的中點(diǎn)到直線C3的極坐標(biāo)方程θ=$\frac{π}{3}$的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{1}{2}$x2+alnx(a∈R).
(1)當(dāng)a=-2時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x>1時(shí),不等式f(x)<x2-$\frac{1}{2}$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[0,π]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}是各項(xiàng)為正數(shù)的等比數(shù)列,且a2=9,a4=81.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)若bn=log3an,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,若集合M={0,1,$\frac{π}{2}$},N={y|y=cosx,x∈M},則M與N的關(guān)系用韋恩(Venn)圖可以表示為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案