在△ABC中,角A,B,C所對邊的邊長分別是a,b,c.
(1)若c=2,C=且△ABC的面積等于,求cos(A+B)和a,b的值;
(2)若B是鈍角,且cos A=,sin B=,求sin C的值.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題
cos-sin的值為( )
A. B.- C.0 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題
下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為( )
A.y=cos 2x,x∈R
B.y=log2|x|,x∈R且x≠0
C.y=,x∈R
D.y=x3+1,x∈R
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題
若變量x,y滿足約束條件,則z=2x+y的最大值和最小值分別為( )
A.4和3 B.4和2
C.3和2 D.2和0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題
如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1?CE?C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:填空題
已知函數(shù)f(x)=Asin(A>0,ω>0)的最小正周期為2,且f(0)=,則函數(shù)f(3)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
點M、N分別是正方體ABCD—A1B1C1D1的棱A1B1、A1D1的中點,用過A、M、N和D、N、C1的兩個截面截去正方體的兩個角后得到的幾何體如下圖,則該幾何體的正(主)視圖、側(cè)(左)視圖、俯視圖依次為( )
A.①②③ B.②③④
C.①③④ D.②④③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題
執(zhí)行兩次如圖所示的程序框圖,若第一次輸入的a的值為-1.2,第二次輸入的a的值為1.2,則第一次,第二次輸出的a的值分別為( )
A.0.2,0.2 B.0.2,0.8
C.0.8,0.2 D.0.8,0.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題
在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是( )
A.銳角三角形 B.直角三角形
C.鈍角三角形 D.不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com