(13分) 已知圓,內(nèi)接于此圓,點(diǎn)的坐標(biāo)為坐標(biāo)原點(diǎn).
(Ⅰ)若的重心是,求直線的方程;
(Ⅱ)若直線與直線的傾斜角互補(bǔ),求證:直線的斜率為定值.

(1).(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,直線,
(1)求證:直線與圓恒相交;
(2)當(dāng)時,過圓上點(diǎn)作圓的切線交直線點(diǎn),為圓上的動點(diǎn),求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 已知圓的圓心軸上,半徑為1,直線,被圓所截的弦長為,且圓心在直線的下方.
(I)求圓的方程;
(II)設(shè),若圓的內(nèi)切圓,求△的面積
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線與圓相交于兩點(diǎn),求實數(shù)的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)已知圓C過點(diǎn)(4,-1),且與直線相切于點(diǎn).
(Ⅰ)求圓C的方程;
(II)是否存在斜率為1的直線l,使得l被圓C截得弦AB,以AB為直徑的圓經(jīng)過原點(diǎn),若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)光線l過點(diǎn)P(1,-1),經(jīng)y軸反射后與圓C:(x-4)2+(y-4)2=1
相切,求光線l所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知雙曲線 的一條漸近線方程是 ,它的一個焦點(diǎn)在拋物線 的準(zhǔn)線上,則雙曲線線的方程為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知一個圓C和軸相切,圓心在直線上,且在直線上截得的弦長為,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,圓C:,直線.
(1) 當(dāng)a為何值時,直線與圓C相切;
(2) 當(dāng)直線與圓C相交于A、B兩點(diǎn),且時,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案