已知函數(shù)f(x)=x2+(m-1)x+1.
(Ⅰ)若方程f(x)=0有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)<0的解集為(x1,x2),且0<|x1-x2|<2
3
,求實(shí)數(shù)m的取值范圍.
考點(diǎn):絕對(duì)值不等式的解法,二次函數(shù)的性質(zhì)
專題:不等式的解法及應(yīng)用
分析:(Ⅰ)依題意,由△=(m-1)2-4>0即可求得實(shí)數(shù)m的取值范圍;
(Ⅱ)依題意知m<-1或m>3,又|x1-x2|<2
3
,利用韋達(dá)定理可求得-3<m<5,二者聯(lián)立即可求得實(shí)數(shù)m的取值范圍.
解答: 解:(Ⅰ)∵f(x)=x2+(m-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(m-1)2-4>0,解得:m<-1或m>3;
(Ⅱ)依題意知,x1、x2是方程x2+(m-1)x+1=0的兩異根,
由(Ⅰ)知m<-1或m>3;①
又|x1-x2|<2
3
?(x1+x2)2-4x1x2=(m-1)2-4<12,
解得:-3<m<5,②
由①②得:-3<m<-1或3<m<<5,
∴實(shí)數(shù)m的取值范圍是(-3,-1)∪(3,5).
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,著重考查二次函數(shù)的性質(zhì)及韋達(dá)定理的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,三個(gè)內(nèi)角A、B、C所對(duì)的邊依次為a、b、c.設(shè)向量
m
=(cosA,sinA),
n
=(cosA,-sinA),a=2
3
,且
m
n
=-
1
2

(1)若b=2,求△ABC的面積;
(2)求b+c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a,b,c.求證:
a-b
a+b
=
tan
A-B
2
tan
A+B
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其前n項(xiàng)的和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=21,S4+b4=30.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)記cn=anbn,n∈N*,求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,且a≥1,函數(shù)f(x)=ax||x|-a|.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若x∈[-2,2]時(shí),f(x)的最大值為g(a),求出g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)動(dòng)點(diǎn)A、B和一個(gè)定點(diǎn)M(x0,y0)均在拋物線y2=2px(p>0)上,設(shè)F為此拋物線的焦點(diǎn),Q為其對(duì)稱軸上一點(diǎn),若(
QA
+
1
2
AB
)•
AB
=0,且|
FA
|,|
FM
|,|
FB
|成等差數(shù)列.
(1)求
OQ
的坐標(biāo);
(2)若|
OQ
|=3,|
FM
|=2,求|
AB
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,3),B(3,1),C(-1,0),求△ABC的面積△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:x2=4y的焦點(diǎn)為F,過點(diǎn)K(0,-1)的直線l與C相交于A,B兩點(diǎn),點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)為D.
(Ⅰ)證明:點(diǎn)F在直線BD上;
(Ⅱ)設(shè)
FA
FB
=
8
9
,求∠DBK的平分線與y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二維空間中圓的一維測度(周長)l=2πr,二維測度(面積)S=πr2;三維空間中球的二維測度(表面積)S=4πr2,三維測度(體積)V=
4
3
πr3;四維空間中“超球”的三維測度V=8πr3,則猜想其四維測度W=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案