分析 (1)利用遞推關(guān)系即可得出;
(2)由$\frac{{2}^{_{n+1}}}{{2}^{_{n}}}$=an+1,可得:bn+1-bn=n.利用“累加求和”與“裂項(xiàng)求和”即可得出.
解答 解:(1)∵a1=1,Sn=2n-1.
∴當(dāng)n≥2時(shí),an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1.當(dāng)n=1時(shí)也成立.
∴an=2n.
(2)∵$\frac{{2}^{_{n+1}}}{{2}^{_{n}}}$=an+1,
∴${2}^{_{n+1}-_{n}}$=2n,
∴bn+1-bn=n.
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(n-1)+(n-2)+…+1+1
=$\frac{n(n-1)}{2}$+1.
∴$\frac{1}{_{n}+n-1}$=$\frac{1}{\frac{n(n-1)}{2}+1+n-1}$=$2(\frac{1}{n}-\frac{1}{n+1})$.
∴數(shù)列{$\frac{1}{_{n}+n-1}$}的前n項(xiàng)和Tn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=2$(1-\frac{1}{n+1})$
=$\frac{2n}{n+1}$.
點(diǎn)評(píng) 本題考查了“累加求和”與“裂項(xiàng)求和”、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A,B,C三點(diǎn)共線 | B. | A,B,D三點(diǎn)共線 | C. | A,C,D三點(diǎn)共線 | D. | B,C,D三點(diǎn)共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 23 | B. | 24 | C. | 26 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a?平面a,b?平面β且α∩β=∅ | B. | a?平面α,b?平面α | ||
C. | a?平面α,b?平面β | D. | a∩b=∅且a不平行于b |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com